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Multi-view clustering, which aims to cluster datasets with multiple sources of information, has a wide
range of applications in the communities of data mining and pattern recognition. Generally, it makes use
of the complementary information embedded in multiple views to improve clustering performance.
Recent methods usually find a low-dimensional embedding of multi-view data, but often ignore some
useful prior information that can be utilized to better discover the latent group structure of multi-view
data. To alleviate this problem, a novel pairwise sparse subspace representation model for multi-view
clustering is proposed in this paper. The objective function of our model mainly includes two parts. The
first part aims to harness prior information to achieve a sparse representation of each high-dimensional
data point with respect to other data points in the same view. The second part aims to maximize the
correlation between the representations of different views. An alternating minimization method is
provided as an efficient solution for the proposed multi-view clustering algorithm. A detailed theoretical
analysis is also conducted to guarantee the convergence of the proposed method. Moreover, we show
that the must-link and cannot-link constraints can be naturally integrated into the proposed model to
obtain a link constrained multi-view clustering model. Extensive experiments on five real world datasets
demonstrate that the proposed model performs better than several state-of-the-art multi-view

clustering methods.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Many kinds of real-world data appear in multiple views. For
example, web pages contain both images and corresponding texts,
and images can be encoded by different features such as color
histogram and Fourier shape descriptors. Although learning tasks
such as classification and clustering can be approached based on one
single view, multiple views providing complementary information
can improve the performance of learning tasks [1]. This leads to a
surge of interest in multi-view learning, whose goal is to exploit
multiple views to obtain better performance rather than relying on
every single view. Till now, multi-view learning has been widely
studied in different areas such as data mining, multimedia, computer
vision and natural language processing [2-5].

As one of the basic tasks of multi-view learning, multi-view
clustering has attracted more and more attention because it can
handle large numbers of unlabeled datasets. The objective of
multi-view clustering is to cluster multi-view datasets based on
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their latent groups. Generally, the main challenge lies in how to
make use of the complementary characteristics embedded in the
multiple sources of information. Plenty of multi-view clustering
algorithms have been developed to solve this problem. Some
methods aim to find a unified low-dimensional embedding to
fuse the multi-view representations, and clustering is then per-
formed when the unified representation is obtained [6,7]. These
methods often map the original high-dimensional feature space to
a latent low-dimensional space so as to well explore the feature
correlation between different views. On the other hand, some
methods perform multi-view clustering through merging the
clustering results from different individual views [8,9]. These
methods, called late fusion, obtain the final clustering results by
voting or other fusion strategies. For more details about multi-
view clustering, refer to Section 2.

Although various existing methods indeed improve the clustering
performance for multi-view data, they often do not take some useful
prior knowledge into consideration, such as collaborative [10], sparse
[11] and low-rank [12] information, which has been shown to be
helpful for clustering in some data mining applications. On the other
hand, spectral-based subspace clustering methods [13] are recently
developed, which can take advantage of such prior information and
achieve promising results. These methods bring in different prior

http://dx.doi.org/10.1016/j.neucom.2015.01.017

Please cite this article as: Q. Yin, et al., Multi-view clustering via pairwise sparse subspace representation, Neurocomputing (2015),



www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2015.01.017
http://dx.doi.org/10.1016/j.neucom.2015.01.017
http://dx.doi.org/10.1016/j.neucom.2015.01.017
mailto:qyyin@nlpr.ia.ac.cn
mailto:shu.wu@nlpr.ia.ac.cn
mailto:rhe@nlpr.ia.ac.cn
mailto:wangliang@nlpr.ia.ac.cn
http://dx.doi.org/10.1016/j.neucom.2015.01.017
http://dx.doi.org/10.1016/j.neucom.2015.01.017
http://dx.doi.org/10.1016/j.neucom.2015.01.017
http://dx.doi.org/10.1016/j.neucom.2015.01.017

2 Q. Yin et al. / Neurocomputing u (AEEE) REE-EER

knowledge to constrain the self-representation matrix of the dataset
to be the ideal block diagonal matrix, and then use the spectral
method to obtain the final clustering results. Moreover, algorithms in
this class can well discover the relationship between data points and
reflect the latent group structure of the dataset. However, these
methods often focus on the single view data and could not been
directly applied for multi-view datasets.

Inspired by the recent advances in subspace clustering, this
paper proposes a novel multi-view clustering framework based on
sparse subspace representation. The proposed model resorts to
subspace clustering for efficiently using the prior knowledge
compared with conventional multi-view clustering methods.
Besides, pairwise co-regularization is developed to explore the
complementary information embedded in the multi-view data.
More specifically, the sparse representation of the dataset for each
view is firstly constructed. At the same time, a pairwise co-
regularization constraint is utilized to capture the interaction
between the correlated view-specific sparse representations. Then,
we develop an iterative algorithm to efficiently solve the proposed
framework, and provide rigid theoretical analysis on the conver-
gence of this algorithm. Moreover, we discuss the impacts of the
proposed different co-regularization forms in exploring the corre-
lation between views. In addition, we show that the link prior can
be easily integrated into our proposed model and a link con-
strained multi-view clustering method is accordingly developed.
Extensive experiments are conducted to demonstrate the effec-
tiveness of the proposed methods.

Main contributions in this paper are summarized as follows:

(1) A novel pairwise co-regularization model is proposed for the
multi-view clustering problem. It harnesses the prior informa-
tion to obtain the view specific sparse representation and
meanwhile utilizes the correlation between different views.
Besides, different co-regularization forms are discussed as
special examples in our framework.

(2) A novel link constrained multi-view clustering algorithm is
developed to naturally integrate the partially observed super-
visory information (e.g., must-link and cannot-link). To the
best of our knowledge, this is rarely studied in the literature of
multi-view clustering.

(3) We verify the effectiveness of the proposed multi-view clus-
tering algorithms with extensive experiments on five real
world datasets, achieving state-of-the-art results in terms of
accuracy and normalized mutual information.

The rest of this paper is organized as follows. In Section 2, we
briefly review multi-view clustering and subspace clustering
algorithms. Then our multi-view sparse subspace clustering
method is introduced in Section 3. Section 4 gives the extensions
of our multi-view clustering model. Extensive experimental
results and analysis are given in Section 5. Finally, Section 6
concludes the paper.

2. Related work

In this section, we briefly introduce the background of our
proposed model, which consists of multi-view clustering and
subspace clustering.

2.1. Multi-view clustering

Multi-view clustering, which aims to cluster the dataset with
multiple views, can be roughly classified into three categories
based on the usage of multiple sources of information in the
clustering process [1,14]. Algorithms in the first category find a

unified low-dimensional embedding of multi-view data, and then
cluster the dataset using this representation like the single view
clustering methods [15,6,2,16-19]. These methods, also called
subspace learning-based methods, are widely studied. Kumar
et al. [6] proposed a co-regularization framework to regularize
the difference between view-specific Laplacian embeddings. Liu
et al. [7] developed a multi-view non-negative matrix factorization
framework to gain a consensus low-dimensional feature matrix
from the original high-dimensional data, and He et al. [20] further
improved the idea of multi-view non-negative matrix factorization
based clustering algorithms. Recently, Wang et al. [3]| proposed a
regression-like clustering method, which directly obtains the final
consensus label matrix.

The second category directly integrates the information of
different views in the clustering process. Popular examples are
the co-EM clustering algorithm [21] and the co-training frame-
work [22-24]. Kumar and Daume [23] resorted to the co-training
framework, which is widely used in the semi-supervised learning,
to design the first co-training based multi-view spectral clustering
algorithm. Zhao et al. [22] combined LDA, K-means with the co-
training framework and developed a subspace co-training frame-
work for the multi-view clustering task. In contrast, the third
category is late fusion (or called ensemble clustering). That is, the
final clustering result is derived from integrating each individual
clustering result [25,9,26]. Long et al. [8] proposed to use mapping
functions to make clusters from different views comparable and
learn the best clusters from these multiple views. Greene and
Cunningham [9] developed a matrix factorization based method to
group the clusters obtained from each view.

Overall, these multi-view clustering methods indeed improve
clustering performance for multi-view datasets. However, they
rarely consider some useful prior knowledge, such as sparse or low
rank information of the latent group structure, which has been
shown to be helpful for clustering in some data mining
applications.

2.2. Subspace clustering

Subspace clustering aims to cluster the high-dimensional data
into multiple subspaces as well as find the subspaces fitting each
group of data points. Generally it can be divided into four
categories based on different techniques [13], and our discussion
mainly focuses on the recently developed spectral-based subspace
clustering methods [27,28,10,29]. The key idea of these
approaches is to obtain a self-representation matrix by taking
different prior information into consideration. Usually, these prior
information is utilized as different constraints to achieve different
self-representation matrices. Then the above matrix is applied to
construct the affinity matrix, which is used for the final spectral
clustering. Examples lie in this category are briefly introduced as
follows.

Sparse Subspace Clustering (SSC) [11,28] is based on the fact
that each point in a union of subspaces can be written as a linear
(affine) combination of points belonging to the same subspace.
Thus, the representation coefficients for a data point should be
sparse, and this prior information is brought into the model by
using an l;-norm to constrain the representation coefficients.
Different from SSC, Low Rank Representation (LRR) based sub-
space segmentation algorithms [12,27] seek the lowest rank
representation for all points. The prior information lies in the
low rank characteristic of the optimal representation matrix.
Whereas, the Multi-Subspace Representation (MSR) based sub-
space segmentation methods [30,31] regularize the representation
matrix to be both low rank and sparse. By a careful parameter
configuration, the subspace structure can be well revealed. Least
Squares Regression (LSR) [10,32] applies ridge regression to
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construct the representation of all points and it can be proven that
LSR has a good grouping effect that tends to group highly
correlated data together.

Although many spectral-based subspace clustering methods
are recently developed and make use of prior information to
obtain promising clustering results, they often focus on single view
data and have rarely been applied to multi-view datasets. Hence,
in the following sections, we employ the idea of subspace cluster-
ing methods for the problem of multi-view clustering.

3. Multi-view sparse subspace clustering (MultiSSC)

Assume that we have data X' =[X")", 3, ..., X1 e R
with | views sampled from c classes and X'=[x}, x%,...,
Xyle R**™ denotes the vth view of X with dimension d,. Our goal
is to group the n data points into their corresponding classes. Here,
we make two assumptions: (1) Each view is sufficient for the
clustering problem, which indicates that X'(v=1,2,...,) has
complete feature representations. (2) The underlying clustering
would assign a point to the same cluster irrespective of the view,
which means that the true class labels for x{ and x}* (v # w) should
be the same. This is a natural and reasonable assumption to avoid
ambiguity in the clustering results.

In the following, we first formulate the multi-view sparse subspace
representation in Section 3.1, which learns view specific sparse
representation by taking the multi-view characteristic into consid-
eration. Then we give the solution of the multi-view sparse subspace
representation in Section 3.2. Section 3.3 gives the complete multi-
view sparse subspace clustering algorithm (MultiSSC). Convergence
and computational complexity analysis of the proposed MultiSSC
model are then described in Section 3.4. Finally, the variants of
MultiSSC using different co-regularization forms are also developed
to explore the correlation between different views.

3.1. Multi-view sparse subspace representation

The key step in our model is to construct the sparse represen-
tation of each view and maximize the correlation between views
based on the unified latent group structure. Then the learned
sparse representations are utilized to achieve the final clustering.

To begin with, we give the key formulation of the sparse
representation based subspace clustering method. Using the above
notation, we have

ming |X' = X"Z'|F+allZ"|l; st diag(Z")=0 (1

where Z' e R™" is the sparse representation matrix, with each
column being the reconstruction coefficients for its corresponding
data point. And the regularizer ||.||; forces the target points to be
reconstructed using the samples belonging to the same subspace.
ais a positive parameter trading off the reconstruction error and
the sparse constraint. diag(C) is the diagonal elements of matrix C,
and the zero constraint on the sparse representation matrix is
used to avoid trivial solution.

Multi-view data often consist of multiple heterogeneous repre-
sentations, and cannot be directly adapted to the above model. To
handle the multi-view data and resort to the subspace clustering
model, we need to maximize the correlation of sparse representa-
tions between different views. Generally, the values of the sparse
representation can be used to measure the similarity between data
points and reflect the group structure. Under our assumption, the
latent group structure of different views should be the same. So a
general framework that can explore the correlation among differ-
ent views is written as

ming Y XY =X Z' 12 +a>_I1Z° i+ ....Z"
v v

s.t. diag(Z')=0, vve(l,...l 2)

where (p(Z], ...,Z%) is the regularizer to utilize multiple sources of
information. @ and fare two positive parameters balancing the
three items, and the other variables are the same as in Eq. (1).
Pairwise constraint, which has been designed to restrict the
coupled relationship, can be utilized in Eq. (2) to explore the view-
view correlation. So some specifically designed pairwise co-
regularization constraints can be used to make use of the multiple
sources of information. We discussed this in Section 5.7. Here, a
feasible objective with pairwise constraint can be formulated as

ming Y IX'=X"Z'F+aY_ 21 +Bd, _, N2 =Z"1
s.t. diag(z')=0, vve({l,...l 3)

where ||Z'—Z"||; is an [;-norm based pairwise co-regularization
constraint to be explained in the next paragraph. It should be
noted that we can learn pairwise specific importance parameter
for the co-regularization term in Eq. (3) like the method proposed
in [2], but here we just use the same £ for simplicity.

The real-world data, especially those on the web, are often polluted
for various reasons. Thus view-specific noise and outliers lead to the
corruptions of the representation matrix. For example, when data
point ¥} is seriously polluted, the ith column of Z” will be affected,
leading to negative influence on the interaction between view-specific
reconstruction coefficients. So we propose an /;-norm based pairwise
constraint ||Z¥ —Z"||; to alleviate the corruption problem and mean-
while to make use of the multiple sources of information.

3.2. Solution to multi-view sparse subspace representation

In this subsection, we give the optimization method for the
proposed formulation of multi-view sparse subspace representa-
tion. Since it is difficult to estimate all the variables at the same
time, we propose an iterative updating algorithm.

We iteratively solve Z¥ with Z" (w # v) fixed. Then Eq. (3) can
be rewritten as

ming | X' =X"Z"|F +alZ' Ik +5)_, .,
s.t. diag(Z')=0 4)

1Z"=Z"1Ih

To eliminate the equality constraint and make Eq. (4) easy to be
optimized, we solve Z” once per column. Thus Eq. (4) is rewritten as

ming |lx{ =X Z{I? +allZ} I+ 5, NZ{ =Z"1 (5)

where Z! is the ith column of Z’' and X" ; represents all data
points excluding x{ in the vth view.

Since Eq. (5) consists of two non-smooth regularization terms, it
is not easy to obtain the analytic solution directly. Similar to [3,33], an
iteratively re-weighted method is applied to solve the problem.
Taking the derivative of Eq. (5) with respect to Z{, we have

X)X Z] = X)X +aMyZ{ + Y NwZ{ =0 (6)
where M, and N, (w=##vV) are diagonal matrices with their jth
diagonal elements calculated as’

1 1

(N )i = ===
TRIA A

(My);; = 27} )

where |.|; is the jth absolute value of the target vector. And the

! After obtaining Z¥, we insert a zero element to the ith position of Z¥ and it will
then consist of the ith column of Z” as claimed in Eq. (4).

2When |z} \j =0, Eq. (5) is not differentiable. And a small perturbation is
introduced as in [34] to smooth the objective as 1/(2,/|Z} \f+ . Similarly, when
1Z{ —Z}";;=0, 1/(21Z{ —Z}"};) can be reformulated as 1/(2,/IZ{ —Z'|?+{). In our

following experiments, we set { =1e—8.
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solution of Eq. (6) is

/= (&)X a1 Y, N (XY, Nz
d)

Note that M, and N,, are dependent on Z;, so we can iteratively
solve M,, N, and Z}. After an iteration of M,, N,, and Z}, we use the
same method to solve Z} (w##v), and the whole procedure is
repeated until convergence. Finally, we obtain Z'(v=1,...,]) after
all their columns being calculated. The whole algorithm is sum-
marized in Algorithm 1.

Algorithm 1. Solving Eq. (3) for multi-view sparse subspace
representation.

Input:
Multi-view dataset X = {Xl;XZ; ...;X’}, parameter a and f.
1. t=1. Initialize (Z")' =0(v=1,2,...,]);
2: fori=1:ndo
3:  while not converge
4 Calculate Mt*! and N.f(w=1, ..., w # v) using Eq.

(7);

v

Solve (Z!)!*! using Eq. (8);
Repeat 4 and 5 to solve (Z}")!*(w # v)) with the
calculated (z})'*! to replace (Z})';
7. t=t+1;
8: end while
9: end for
Output:
Sparse representation matrices Z'(v=1,2,....]).

@

3.3. Algorithm of MultiSSC

After solving Eq. (3) as in Algorithm 1, we obtain the sparse
representation matrices Z' e R""*(v=1,2,....1) for all the views.
Generally, the elements of the representation matrices reflect the
pairwise relationship between data points of different views.
Similar to the spectral based subspace clustering method, we use
them to construct the affinity matrix and then apply the spectral
clustering algorithms such as the Normalized Cuts (Ncuts) [35] to
group the multi-view dataset. We make the affinity matrix sym-
metric by setting A=1(Z|"+1|Z|) like [12,10]. Similar to [6], we
can use either one of Z'(v=1,2,....1) or the average of all |Z"| to
obtain the affinity matrix. This procedure is summarized in
Algorithm 2.

Algorithm 2.

Input:
Multi-view data X =
clusters c.

1: Obtain the multi-view sparse subspace representation
Z'(v=1,2,...,]) by Algorithm 1.

2: Define the affinity matrix: A =1(Z"|T+Z"|);

3: Apply the Ncuts [35] to the affinity matrix A.

Output:
c groups of the multi-view dataset X.

(X':X%;...:X"} and the number of

3.4. Convergence and computational complexity

Convergence analysis: To prove the convergence of Eq. (3), it
should be guaranteed that Algorithm 1 decreases the objective
value in each iteration. Specifically, once solving (Z})'*! with

@Z¥)w=v) fixed? Step 5 in Algorithm 1 will decrease the
objective value. To simplify the notation, we use z,, z,,, ¥ and Y
to represent Z{, Z{", x{ and X" ; respectively.

According to Step 5 in Algorithm 1, we can derive that

2" =minlly - Yz,|* +-az;M, " 'z, + ) v—2w) NG (20— )
)
Since Eq. (8) is the analytic solution of Eq. (9), we can derive that

ly =Yz, I? +a@ )™ 2 5

W#V

t+1 tANTNE+T St+1 t
wer @ =2y Ny (2, —2y,)

(2, —2ZL)'NF (2, — 2L,
(10)

<lly—Yzy > +a@) Myt 2, +

w#V

By substituting M{*! and N 'w=1,...,
equation, we have

26120 |26+ =20 1125t — 2L |
LH']'HIZ 2120, +/32W#VZ 2\20 — 2t |i

|2} 1;125| 12, zfl\zf zL i
SLt—'—aZz 21ZL); I+ﬁ2w;&vz 21z —2L,; : an

where L; = ||y —YZ,||2, and |k|; is the ith absolute value for vector k.
Here we mtroduce a function f(x)=x—x?/2a, which has the
property: VxeR, a> 0, f(x) < f(a). Then we substitute a with |z|;
and |z —Z¢,|;, and let x be |24 1|; and |24+ — 2L, |; respectively. Then
the following equations hold

t+1
|Zt+1|»— |‘ZJr ||ZJr |1
DE =) 2128

l;w#v) into the above

|24 1112 ;
<> lzli=> 2] (12)

t+1 t t+1 t
lzy " =z, lilzy =2yl

Zw#inlzfﬁrl _Z‘t’Vli_Zw#vZ‘ - ;l;;l V |
1zt — 2L, 1512, — 2L, |;
SZw#inlzi_zé\/li—Zw¢vZ Z‘Zt Z\t/vll o 13

Adding both sides of Egs. (12) and (13) into Eq. (11), we obtain

Lei+ay 12 i+BY", L > 12 =2l
<Le+a) 1z)i+BY, > 12 —Zyli (14)

Namely, the following equation holds

ly =Yz, P+ allzy Y,
<|ly-YZ 2 +alzill +4

Therefore, Algorithm 1 decreases Eq. (3) in each iteration.
Computational complexity analysis: We briefly discuss the com-
putational complexity of the proposed multi-view sparse subspace
clustering algorithm. In Algorithm 1, the main calculation lies in
the inverse problem as in Eq. (8), which has a cubic complexity.
However, by solving a system of linear equations instead, we can
obtain a quadratic complexity of the number of points [3]. More-
over, since each column of Z'(v=1,...,]) is solved individually, a
parallel computing strategy can be easily adopted for efficiency.

t+1 t
llz,* ' =z}, Il

iz —z5, 114 15)

w#V

3.5. Discussion of different co-regularization forms

As explained in Section 3.1, different co-regularization con-
strains can be utilized to explore the correlation between different
views. In this subsection, we discuss two extra co-regularization
forms that can be used to make use of multiple sources of
information, and their objectives are respectively formulated as

ming Yy IX'=X"Z"F+aY 21 +BD, -, N2 =2 17

30r (Z}”)‘“ that has been calculated already for some w. Since it does not
influence the proof of the convergence analysis, we use (Z!)' for all w for
convenience.
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s.t. diag(z')=0, vve(l,..1 (16)

ming Y X=X "2V +ad N2 +BD S, MZZE

s.t. diag(z")=0, vve(l,...l 17)

where in Eq. (16), |Z'—Z"||? is an l,-norm based pairwise co-
regularization to force the view specific representations to be
similar. In Eq. (17), |I[Z{,Z}']ll21 is the L»;-norm on one point's two
reconstruction coefficient vectors, which enforces the sparse
representations of the two views have the same nonzero group
structure.

Since the ||Z" —Z"|| term is differentiable, the optimization and
the convergence of Eq. (16) can be obtained by following Sections
3.2 and 3.4. As for Eq. (17), since the added term is non-smooth at
the origin, an iteratively re-weighted method is applied like in Eq.
(5). And the derivative of Eq. (17) with respect to Z} is

X)X ZE =X )XY +aMVZE+ Y, NwZi =0 (18)

where N,, is a diagonal matrix with its jth diagonal element
calculated as (Nw)jj=%[(ZiV)j,(Z}”)j]2 and the other variables are
the same as in Eq. (6). Then the optimization and convergence
can be obtained like MultiSSC in Sections 3.2 and 3.4.

To distinguish the above two co-regularization based clustering
methods from MultiSSC as in Eq. (3), we name them as MultiSSC_1
and MultiSSC_2 respectively.

4. Extensions of MultiSSC

In the previous section, we give our algorithm for multi-view
clustering (MultiSSC). Now we give another two extensions of our
proposed MultiSSC method, which consist of a weakly semi-
supervised link constrained multi-view clustering (L-MultiSSC)
and a special co-regularization based multi-view clustering
method (S-MultiSSC).

4.1. Link constrained MultiSSC (L-MultiSSC)

In many applications, we can easily obtain some pairwise link
information that tells us whether two points are in the same class
or not. This prior information is also called must-link and cannot-
link constraints [36]. A must-link constraint enforces that two
points must be in the same category while a cannot-link constraint
enforces that two points are placed in different classes.

By using a partially observed link matrix that has binary entries
indicating which candidate data points are in the same category,
we can guide the learning of multi-view sparse representation
under properly designed constraints. Since the partially observed
link matrix reflects the high-level semantics of data and provides
groundtruth of the pairwise relationship, we enforce the corre-
sponding entries of each view-specific sparse representation
matrix to be consistent with the observed link entities as in [37],
which uses a similar constraint in image classification application.
The objective is then formulated as

ming " IX"=X"Z"[F+ad " 1Z"1
+BY M2 =2V 0D L)
s.t. diag(Z')=0, vve{l,...l} (19)

where L is the partially observed link matrix with its observed (ij)
th element being 1 or 0 depending on whether point i and point j
are in the same category. O is the observed must-link and cannot-
link set. The other variables are the same as in Eq, (3).

We define an indicator matrix R with its (ij) th value assigned as
follows:

1 if Ly is observed
Ry = { 0 if L; is unobserved (20)
Then the introduced link constrained term Z,,ZUEO(Z,-V]-—L,-j)2 can
be formulated as [IZ©® R-LoR|?, where the operator
orepresents the element-wise product of two matrices. And
Eq. (19) can be further rewritten as

ming Y~ IX' =X"Z' [ +ad ", 12" 1h
B> W2 =Z"1+7IZ © R—L © RI?
s.t. diag(z')=0, vve(l,...l 21)

Since the added link constraint term is differentiable, the
optimization and convergence analysis of Eq. (21) can be derived
by following Sections 3.2 and 3.4.

4.2. Shared co-regularization for MultiSSC (S-MultiSSC)

Different from the [;-norm based pairwise co-regularization
that each view has its individual sparse representation, we assume
that all the views share a unified representation Z*. Namely, we
consider the intrinsic spare representation can associate all the
views. Even though this assumption is a little arbitrary, especially
for the noise data, it can lead to an interesting observation. Firstly,
the model can be formulated as

ming " X ~X"Z* |} +allZ*|l; st diagZ*) =0 (22)

Since all the views share the same sparse representation, there
will be no co-regularization between different views.

We will derive a simple equivalent form of Eq. (22). Firstly, the
sum of all views’ reconstruction errors can be written as

S IXY=XZAE =t [ d =29 (30, XD d 2% = IX -XZ*|1?
(23)

where X =[X":X%...;X"], namely a concatenation of different
views of the dataset. Thus this model can be finally formulated as

min|X -XZ*If +alZ"ll:  s.t. diagZ") =0 (24)

This multi-view clustering model equals to the feature con-
catenation of all views and then uses this new feature to obtain the
sparse representation matrix. The above observation in our model
gives a justification for using concatenation of the multi-view
features. As for its optimization, we can resort to Section 3.2.

5. Experiments

In this section, extensive experiments are conducted to demon-
strate the effectiveness of our proposed multi-view sparse sub-
space clustering model.

5.1. Databases

We report experimental results on five public datasets and the
description of the databases are summarized in Table 1.

e UCI handwritten digit dataset:* It consists of features of
handwritten numerals (0-9) extracted from a collection of Dutch
utility maps. The dataset consists of 2000 samples with 200 in
each category, and it is represented in terms of six features. Similar
with [6], we select the 76 Fourier coefficients of the character

4 http://archive.ics.uci.edu/ml/datasets/Multiple + Features
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Table 1
Information of the multi-view datasets.

Info. Digits 3-Source Movies617 Animal WebKB
# of Views 2 3 2 3 2
# of Clusters 10 6 17 10 5

shapes and the 216 profile correlations as two views of the original
dataset.

e 3-Sources text dataset:®> It was collected from three well-
known online news sources: BBC, Reuters and the Guardian. In
total it consists of 416 distinct news manually categorized into six
classes. Among them, 169 are reported in all three sources and are
used in our experiments as in [7] with each source serving as one
independent view of a story. And the feature describing stories for
all the three views is the word frequency.

e WebKB dataset: It consists of webpages collected from four
universities: Texas, Cornell, Washington and Wisconsin, and each
webpage can be described by the content view and the link view.
Since the four subsets of the dataset are similar in content and
organization, we just test our method on the Texas dataset. Texas
is divided into five categories (course, project, student, faculty and
staff) and the data can be downloaded from the Internet.®

® Movies617 dataset:® It was extracted from IMDb (http://www.
imdb.org), and consists of 617 movies over 17 labels. The two
views are the 1878 keywords and the 1398 actors with a keyword
used for at least 2 movies and an actor appeared in at least
3 movies.

e Animal dataset:” It consists of 30,475 images of 50 animals
with six pre-extracted features for each image. In this dataset, we
select three kinds of features, namely PyramidHOG (PHOG), color-
SIFT and SURF as three views. Besides, we select the first ten
categories with each class consisting of randomly sampled 50
points as a subset to evaluate the proposed method.

5.2. Experimental settings

To evaluate the performance of the proposed method, we
compare our method with the following algorithms.

S_Spectral: Using the spectral clustering method in [35] to
cluster each view's data and selecting the best clustering result.

S_Subspace: Using sparse subspace representation of each
view's data as shown in Eq. (1) to construct the affinity matrix,
and then using the spectral clustering method in [35] to cluster the
dataset. Similar with S_Spectral, the best clustering results are
reported.

PairwiseSC, CentroidSC: Kumar [6] proposed two objective
functions to co-regularize the eigenvectors of all views’ Laplacian
matrices.

Co_Training: Alternately modifying one view's graph structure
using the other view's information [23].

Multi_NMF: Liu et al. [7] developed a multi-view non-negative
matrix factorization method to group the multi-view data.

Multi_CF: Wang et al. [3] proposed a structure sparsity based
multi-view clustering and feature learning framework, which is
used for multi-view data clustering.

MultiSSC: Our proposed multi-view sparse subspace clustering
method as in Eq. (3).

It should be noted that the essence of one of our extensions, i.e.,
S-MultiSSC, is the concatenation of different views, and then uses

5 http://mlg.ucd.ie/datasets/3sources.html
8 http://membres-liglab.imag.fr/grimal/data.html
7 http://attributes.kyb.tuebingen.mpg.de/

subspace representation to construct the affinity matrix. This
method also serves as one important baseline, and its results are
displayed in Section 5.6.

In this work, we are not concentrating on how to choose the
clustering numbers, which can be solved through existing algo-
rithms and we just set it to the true number of categories. For
those methods using the Gaussian kernel to construct the affinity
matrix, we use the mean value of the Euclidean distance between
all data points as the standard deviation [6]. For PairwiseSC,
CentroidSC, Co_Training, Multi_NMF methods, we use the codes
released by their authors and follow the suggestions the authors
have given to achieve their best clustering results. For Multi_CF,
we implement the code and follow the clustering rules the authors
suggested to achieve the final clustering results. For our method,
aand fare empirically selected to reach the best clustering
performance. Besides, we choose the view, which achieves the
best clustering results in S_Spectral as the one to construct the
affinity matrix when all view's subspace representations are
obtained. As K-means is used in all the experiments, it is run 20
times with random initialization. Two measures, the accuracy
(ACC) and the normalized mutual information (NMI) are used to
measure the clustering results. Readers can refer to [38] for more
details about their definitions.

5.3. Experimental results

Tables 2 and 3 respectively show the clustering accuracy and
normalized mutual information of different algorithms on the five
public datasets. Overall, it can be seen that our method almost
outperforms all the compared algorithms. Compared with the
single view spectral clustering method (S_Spectral), sparse sub-
space based single view clustering algorithm (S_Subspace) gains
better results. This demonstrates that the sparse representation
can better capture the latent group structure of the dataset,
namely the (dis)similarity between data points, than the Gaussian
kernel based Euclidean distance.

Compared with the S_Subspace method, our proposed Mul-
tiSSC gains promising results, and has at least 3 percent improve-
ment in terms of both accuracy and normalized mutual
information in four databases. Furthermore, in Digits and 3-
Source databases, the proposed method achieves more than
9 percent improvement in terms of both evaluation measures.
This validates the effectiveness of the proposed [;-norm based
pairwise co-regularization, which can take advantage of the
multiple sources of information.

CentroidSC and PairwiseSC algorithms aim to find low dimen-
sional embedding of the Laplacian matrices from multi-view
datasets. However, these methods use the Gaussian kernel to
construct the affinity matrix, which may not truly reflect the
(dis)similarity between data points. This is because even the
Euclidean distance of two points is large, the points can still be
sampled from the same class because of the large within class
variance. And this may be one reason that our method performs
better than these two algorithms.

Multi_NMF is based on the non-negative matrix factorization
and it aims to find an intrinsic low dimensional representation of
the dataset. From the experimental results, Multi_ NMF has poor
performance compared with our method. Besides, Multi NMF is
limited for it needs the feature matrix to be non-negative, which
fails to deal with the feature matrix with negative values.

As for the Multi_CF algorithm, it is a regression-like clustering
method, which can directly obtain the final cluster indicator
matrix. By properly designing regularizers, this method can make
use of the type-wise relevance and feature-wise information
among different views. Compared with our method, it explicitly
makes use of the relationship of the multi-view features and can

http://dx.doi.org/10.1016/j.neucom.2015.01.017
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obtain the final group information without relying on extra
clustering methods. However, the regression-based method,
whose clustering results are not as good as ours, cannot explicitly
discover the latent group structure.

Table 2
Clustering results in terms of accuracy on the Digits, 3-Sources, WebKB, Movies617
and Animal databases. Both mean value and standard deviation are reported.

ACC(%) Digits 3-Source Movies617 Animal WebKB

S_Spectral  66.37(4.44) 52.93(3.59) 25.70(113) 27.21(1.50) 56.79(1.25)
S_Subspace 76.60(4.78) 64.85(0.73) 28.56(1.15) 28.11(1.36) 64.79(6.61)
PairwiseSC ~ 80.82(6.30) 58.37(3.28) 27.89(1.64) 31.65(1.59) 51.63(1.76)
CentroidSC ~ 82.77(714) 58.93(3.07) 28.57(117) 31.06(2.02) 53.90(2.31)
Co_Training 80.22(6.84) 58.37(3.47) 30.74(1.28) 30.35(1.48) 54.25(2.70)

Multi_NMF  69.24(6.28) 68.40(0.06) 26.99(1.19) 30.56(1.02) —

Multi_CF 72.45(4.10) 69.23(3.54) 29.60(1.10) 32.11(1.86) 59.79(0.33)

MultiSSC 86.16(5.31) 73.99(1.76) 33.13(1.44) 32.51(1.36) 65.53(2.34)
Table 3

Clustering results in terms of normalized mutual information on the Digits,
3-Sources, WebKB, Movies617 and Animal databases.

NMI(%) Digits 3-Source Movies617  Animal WebKB

S_Spectral  62.30(1.85) 53.38(2.12) 25.47(0.85) 15.70(0.65) 40.53(1.91)
S_Subspace 71.69(1.96) 54.37(0.00) 29.37(1.01) 17.36(1.06) 42.58(3.45)
PairwiseSC ~ 75.84(2.37) 62.25(2.76) 28.04(0.73) 19.90(1.51) 38.54(0.69)
CentroidSC ~ 76.76(2.58) 62.65(2.51) 28.02(0.72) 18.50(1.48) 38.17(1.05)
Co_Training 75.90(2.27) 63.15(1.79) 30.74(128) 18.98(0.73) 36.24(1.74)
Multi NMF  65.05(2.30) 60.20(0.06) 27.45(0.55) 18.77(0.71) —

Multi_CF  74.55(2.49) 67.91(4.41) 30.09(1.32) 21.25(1.76) 32.94(3.39)
MultiSSC ~ 83.30(3.75) 67.42(2.23) 33.37(0.98) 21.28(0.57) 45.01(3.51)
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5.4. Parameter selection

For the proposed multi-view subspace clustering model, there
are two parameters balancing the reconstruction error term,
sparse constraint term and the l;-norm based co-regularization
term. o is a parameter that controls the regularization on the
sparse representation, and the parameter f controls the pairwise
co-regularization between view-specific sparse representations. In
this section, we investigate how the performance varies with the
change of these two parameters. Here we just report the accuracy
and NMI on the 3-Source, WebKB and Movies617 databases due to
space limitation, and the Digits and Animal datasets show similar
results.

From Figs. 1 and 2, we have the following conclusions. When «
is too small, the sparse reconstruction will lose its effect. In the
case when « is too big, the sparse characteristic will lead to
reconstructing the target data with only a few points, and will
harm the subspace clustering effect. As for the parameter /3, when
p is small, the pairwise co-regularization effect is weak, so the
view-specific sparse representations cannot promote each other
very well. In the case when f is too big, the punishment of the
function will be mainly imposed on the co-regularization item and
the regularizer ||z/]|; will lose its effect. So @ and S should be
carefully selected. In all our experiments, when « and /3 are chosen
from the interval [0.005,0.1], acceptable results can be obtained.

5.5. Convergence

As discussed in Section 3.4, the updating rule decreases the
objective function in each iteration. In Fig. 3, we give the
convergence curves together with the final clustering accuracy
on the 3-Source, WebKB and Movies617 databases (In order to

Movies617

&

=

Accurac

Fig. 1. Accuracy of the proposed MultiSSC vs. parameters « and .

3-Source

WebKB

0,001

Fig. 2. NMI of the proposed MultiSSC vs. parameters « and .
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Fig. 3. Convergence and the corresponding accuracy curves of MultiSSC.
Table 4
Clustering results of S-MultiSSC and L-MultiSSC methods.
Methods 3Source WebKB Movies617
ACC (%) NMI (%) ACC (%) NMI (%) ACC (%) NMI (%)
MultiSSC 73.99(1.76) 67.42(2.23) 65.53(2.34) 45.01(3.51) 33.13(1.44) 33.37(0.98)
S-MultiSSC 72.37(3.52) 65.67(2.47) 60.72(1.82) 30.32(1.52) 27.35(1.06) 27.79(0.58)
L-MultiSSC 75.61(3.57) 68.58(0.71) 67.00(0.74) 44.63(5.61) 34.41(1.28) 35.65(1.43)
Table 5 Table 6
Clustering results in terms of accuracy for MultiSSC, MultiSSC_1 and MultiSSC_1. Clustering results in terms of NMI for MultiSSC, MultiSSC_1 and MultiSSC_1.
ACC(%) Digits 3-Source Movies617 Animal WebKB NMI(%) Digits 3-Source Movies617  Animal WebKB
MultiSSC 86.16(5.31) 73.99(1.76) 33.13(1.44) 32.51(1.36) 65.53(2.34) MultiSSC 83.30(3.75) 67.42(2.23) 33.37(0.98) 21.28(0.57) 45.01(3.51)
MultiSSC_1 80.12(4.61) 74.79(1.70) 33.72(1.15) 32.10(1.11) 66.36(1.45) MultiSSC_1 73.61(0.70) 69.38(2.02) 33.22(0.76) 20.83(0.63) 43.27(0.66)
MultiSSC_2  83.95(6.78) 71.72(4.00) 33.19(0.94) 30.41(0.71) 65.27(2.24) MultiSSC_2  80.11(2.60) 64.42(3.93) 32.86(0.95) 19.41(1.21) 42.51(2.66)

save space, only these three databases with their corresponding
curves are displayed and the other two datasets show similar
results).

As can be seen from Fig. 3, the algorithm converges after about
15 iterations. As for the clustering performance, the accuracy stops
changing a lot after the algorithm converges. The slightly small
changes of the performance may be because of the use of the K-
means algorithm to obtain the accuracy.

5.6. Results of S-MultiSSC and L-MultiSSC

We test the performance of S-MultiSSC and L-MultiSSC meth-
ods on the aforementioned datasets. To obtain the partially
observed link information, we randomly label 10% of the dataset
and construct the pairwise must-link and cannot-link prior based
on the label information. And this setting is repeated 5 times for
fair comparison. It should be noted that we are concentrating on
testing the effect of this link prior information, so we will not
compare our algorithm with semi-supervised clustering methods.
The clustering results are shown in Table 4.

S-MultiSSC equals to concatenating features of all the views
and then using the new feature to obtain the sparse representation
matrix. Since this strategy may bring in information redundancy
and has a high probability of adding more noise to the data

representation, it cannot obtain the clustering performance as
good as the MultiSSC.

Compared with the MultiSSC method, L-MultiSSC constrains
the entities of all views’ sparse representation matrices to be
consistent with the observed link matrix, thus guiding the learning
of the representation matrices. Since the link information reflects
the high-level semantics of the data, it can promote the learning
process. Thus, L-MultiSSC gains better clustering results compared
with MultiSSC.

5.7. Results of MultiSSC_1 and MultiSSC_2

Further, we compare the performance of MultiSSC with the
other two co-regularization based multi-view clustering methods
as introduced in Section 3.5. The clustering results on the five
datasets are shown in Tables 5 and 6. Overall, MultiSSC obtains
slightly better clustering results in terms of both accuracy and
NMI, and MultiSSC_1 and MultiSSC_2 also achieve promising
results compared with previous multi-view clustering methods
as introduced in Section 5.2. This further validates our proposed
multi-view clustering framework.

Compared with MultiSSC_1, MultiSSC uses an [;-norm based
co-regularization instead of the I,-norm co-regularization. When a
point in one view is polluted, its sparse representation will be
affected, and this will then affect its correlation effect with other
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Table 7
Clustering results vs. the number of views on animal database.

# of views 1 2 3 4 5 6

ACC (%) 28.11(1.36) 30.71(2.17) 33.34(1.58) 33.17(1.72) 32.86(1.84) 32.93(1.57)

NMI (%) 17.36(1.06) 19.79(0.76) 20.44(0.71) 21.51(0.76) 21.81(1.33) 20.12(0.90)
view's representations. The [;-norm based pairwise constraint will Acknowledgments

relieve this situation by putting relatively small punishment on the
co-regularization than the l,-norm based co-regularization. Thus,
MultiSSC may be more robust to this situation.

Compared with the MultiSSC, MultiSSC_2 only requires the
nonzero positions of the view-specific representation to be the
same. Maybe it is a bit weak to maximize the correlation between
views, since it does not constrain the values of the sparse
representations. Maybe it is one reason that the performance of
MultiSSC is better than MultiSSC_2.

5.8. Performance vs. the number of views

We give the results of how the clustering performance varies as
the number of views increases. As for the order of the added
views, we follow the idea of boosting for feature selection [39],
namely the added view can achieve the best performance together
with the previous views. The steps are detailed as follows:

1. Choose one view which can achieve the best clustering results.

2. Choose one of the rest views which together with the former
views can achieve the best performance.

3. Repeat step 2 until all views are selected.

In the experiments, our model is tested on the six-view Animal
dataset, which is introduced in Section 5.1. And the other experi-
mental settings are the same as in Section 5.2.

From Table 7, we can see that the clustering results stop
improving when the total number of views is four. It is because
in the real world, as the number of views increases, the comple-
mentary information will be saturated, thus making the clustering
performance cease to increase. Besides, increasing the number of
views may lead to the risk of bringing in outliers and noise, which
may harm the final clustering performance.

6. Conclusion

In this paper, we have proposed a novel multi-view sparse
subspace clustering framework to cluster the multi-view data. Being
formulated as a joint subspace segmentation problem with a pairwise
co-regularization constraint, the proposed MultiSSC model can take
advantage of the prior sparse information and the complementary
information embedded in the multi-view data. We have also devel-
oped an iterative optimization algorithm with rigorous theoretical
proof on its convergence to solve the regularization problem. Besides,
different pairwise co-regularization forms are also discussed to max-
imize the correlation between views. Moreover, a must-link and
cannot-link constrained multi-view clustering algorithm is devised
to integrate the partially available supervisory information. Extensive
experiments have demonstrated the effectiveness of our method
compared with several state-of-the-art multi-view clustering
algorithms.

This work is jointly supported by National Basic Research
Program of China (No. 2012CB316300) and National Science
Foundation of China (No. 61175003).
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