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Abstract—This paper focuses on the problem of finding a few
representatives for a given dataset, which have both representa-
tion and discrimination ability. To solve this problem, we propose
a novel algorithm, called Structure Sparsity based Discriminative
Representative Selection (SSDRS), to find a representative subset
of data points. The selected representative subset keeps the
representation ability based on sparse representation models
assuming that each data point can be expressed as a linear
combination of those representatives. Meanwhile, we employ the
Fisher discrimination criterion to make the coefficient matrix
possess small within-class scatter but big between-class scatter,
which leads to the discriminant ability of representatives. Since
such a selected subset is representative and discriminative, it
can be used to properly describe the entire dataset and achieve
a good classification performance simultaneously. Experimental
results in terms of video summarization and image classification
indicate that our proposed algorithm outperforms the state-of-
the-art methods.

I. INTRODUCTION

In the community of pattern recognition and computer

vision, a common problem is how to efficiently deal with

large scale datasets, such as databases of images, videos and

text documents. Since dealing with massive datasets is time-

consuming and memory-consuming, many relevant methods

have been developed such as dimensionality reduction and

online learning. These methods can, to some degrees, deal with

large scale datasets and improve the classification performance

as well. But they generally need to take all data points into

consideration.

To handle large scale datasets, representative selection [1]

has recently been proposed, which is different from dimension-

ality reduction. Representative subset selection aims at finding

a few representatives in the object space that can appropriately

represent the whole dataset, thus the tasks such as cluster-

ing and classification can be done by using representatives

instead of the entire dataset. Recent works [2, 3] indicate that

classification algorithms can achieve a good performance if

the representatives are informative enough about the given

data. Many typical machine learning algorithms which are not

originally designed for massive datasets can be applied to large

scale datasets by using representatives.

To find a representative subset, several methods have been

proposed [3, 4, 5] in recent years. Kmedoids [3], similar to

Kmeans, is an unsupervised representative selection method

which finds a number of data centers surrounded by other data

points. These centroids are treated as representatives. Different

from Kmedoids, the Affinity Propagation [5] algorithm finds

some data centers, which are chosen as a condensed view of

the whole dataset, by using a message passing algorithm when

similarities between pairs of samples are given. By assum-

ing data to be low-rank, some matrix factorization methods

[1, 6, 7] can be used for representative selection. The Rank

Revealing QR (RRQR) [1] algorithm aims at finding a proper

permutation matrix that can generate the best conditioned sub-

matrix and then obtain a few representatives. When a low-rank

data matrix has missing entries, another matrix factorization

method in [6] can be used to select a subset of samples by

employing a greedy algorithm. Moreover, a nonnegative matrix

factorization method [7] has been proposed to deal with the

data matrix, which contains nonnegative entries. This method

selects a few columns of the data matrix by using an l1/l∞
optimization.

Recently, the sparse model based representative subset se-

lection methods [2] have been demonstrated to be effective in

finding representatives. The Sparse Modeling Representative

Selection (SMRS) method [2] finds a few representatives by

solving a sparse multiple measurement vector problem, and

those selected representatives are correlated to the nonzero

rows of the coding coefficient matrix. Previous works are

basically proposed under the assumption that data points are

either lie in a low-dimensional space or have a natural cluster

structure. Meanwhile, most of them only aim at finding a

subset of data points that can properly describe the entire

dataset. However, these methods seldom take the discriminant

ability of representatives into consideration, which is very

important to the classification task.

In this paper, we propose a novel representative subset selec-

tion algorithm, named Structure Sparsity based Discriminative

Representative Selection (SSDRS), to select a subset of data

points that have the representational capacity and discriminant

ability at the same time. Our goal is achieved by minimizing

the objective function which consists of reconstruction fidelity

term and discrimination constraint term. Specially, the recon-

struction fidelity term is based on the sparse representation
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model, and the discrimination constraint term is achieved by

imposing the Fisher discrimination criterion on the coefficient

matrix so that those selected representatives belonging to the

same class will have the smallest within class scatter and the

representatives belonging to different classes will have the

biggest between class scatter. Thus, representatives selected by

our algorithm not only can well express the entire dataset but

also can make representatives belonging to different classes are

more differentiable. To the best of our knowledge, this is the

first work that focuses on finding a representative subset which

can simultaneously well describe the entire dataset and make

representatives belonging to different classes discriminative.

Experimental results with respect to two applications, i.e.,

video summarization and image classification, show that our

proposed algorithm outperforms the state-of-the-art algorithm-

s.

The rest of this paper is organized as follows. In Section 2,

we briefly review the most related SMRS algorithm. Section

3 presents the formulation of the proposed SSDRS algorithm.

In Section 4, experimental results and discussion are given.

Finally, we conclude our work in Section 5.

II. SMRS REVISITED

Our proposed algorithm is motivated by the Sparse Mod-

eling Representative Selection method (SMRS) [2]. In order

to put our work into context, we first briefly introduce the

SMRS algorithm. SMRS is developed under the assumption

that each data point can be expressed as a linear combination

of a few representatives. The formulation of SMRS is provided

as follows.

Given an m × N data matrix Y = [y1,y2, ... ,yN ]
which consists of N data points {yi ∈ R

m}Ni=1, SMRS

tries to learn a compact coefficient matrix X =
[x1,x2, . . . ,xN ] ∈ R

N×N by constraining the co-

efficient matrix X to be sparse. In this way, each data point

can be well represented by minimizing the following objective

function,

min
X

‖Y − Y X‖2F s.t. ‖X‖q,0 ≤ k,1TX = 1T , (1)

where the mixed l0/lq norm is defined as ‖X‖q,0 Δ
=∑N

i=1 I(
∥∥xi

∥∥
q
> 0), where xi denotes the i-th row of X

and I(·) is an indicator function. The sparsity constraint,

‖X‖q,0 ≤ k, leads the coefficient matrix to be sparse so that

each sample can be represented by a linear combination of at

most k representatives. The affine constraint 1TX = 1T is

imposed on X to ensure the selected representative subset to

be invariant with respect to global translation of the data.

The optimization problem in Equation (1) is a NP-hard

problem because of the existence of the mixed l0/lq norm.

Thus a standard l1 relaxation is used to replace the mixed

l0/lq norm and accordingly the objective function is rewritten

as follow.

min
X

‖Y − Y X‖2F s.t. ‖X‖q,1 ≤ τ, 1TX = 1T , (2)

where ‖X‖q,1 Δ
=

∑N
i=1

∥∥xi
∥∥
q

is the sparsity constraint and

τ is a properly chosen parameter. One can obtain a few

representatives according to the indices of the nonzero rows of

X . Those selected representatives can be seen as a condensed

view of the original dataset.

III. THE PROPOSED METHOD

In this section we first point out the problem we hope to

address, then we formulate the objective function of the pro-

posed algorithm in detail, and finally present the optimization

method.

A. Problem Statement

In this work, we aim to address the problem of finding

a few discriminative representatives which have both repre-

sentational capacity and discriminant ability. Similar to [2],

the representational capacity means that each data point can

be expressed as a linear combination of a few representatives

instead of all the data points. The discriminant ability indicates

that the chosen representatives have proper within-class scatter

and between-class scatter. Such selected representatives can

nicely describe the whole dataset as well as be discriminative

enough for the classification task. The problem of discrimina-

tive representatives selection is introduced as follows.

Given a set of training samples Y , we want to

learn a sparse coefficient matrix X , from which a rep-

resentative subset Yrep = [yi1 ,yi2 , . . . ,yik ] ∈
R

m×k (Yrep ⊆ Y ) can be chosen. We propose the

following objective function of the structure sparsity based

discriminative representative selection model:

min
X

r (Y ,X) + α‖X‖q,1 + βf(X), (3)

where r(Y ,X) is the reconstruction fidelity term; ‖X‖q,1 is

the sparsity constraint; f(X) is the discrimination constraint

imposed on the coefficient matrix X; α and β are scalar

parameters. In the next subsection, we will formulate the

objective function in more detail.

B. Formulation

The first part of our model aims at finding a representative

subset of a given dataset that can appropriately describe the

entire dataset. To overcome the limitation of existing works [1,

3], similar to SMRS [2], we define the reconstruction fidelity

term r (Y ,X) as

r (Y ,X) = ‖Y − Y X‖2F (4)

In practice, each data point will be represented by using as

few representatives as possible. To achieve this, a mixed l1/l2
norm is imposed to constrain the coefficient matrix X , thus

the first part of our model is formulated as

min
X

‖Y − Y X‖2F +α ‖X‖2,1, (5)

where ‖X‖2,1 Δ
=

∑N
i=1

∥∥xi
∥∥
2

is the sparsity constraint and α
is a scalar parameter that controls the sparsity of X .
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The second part of the proposed model f (X) aims at

making the representative subset Yrep discriminative. We can

rewrite Y as Y = [Y1,Y2, . . . ,Yc], where Yi consists

of samples belonging to the ith class. Similarly, we can

rewrite X = [X1,X2, · · · , Xc], where Xi is a sub-

matrix consisting of the coding coefficients on Yi. Then the

discriminant ability of the selected representatives can be

achieved by imposing some discrimination criterion on the

labeled coefficient matrix X . In our model, we take the widely

used Fisher discrimination criterion [8] into consideration,

which can be achieved by minimizing the within-class scatter

SW (X) and maximizing the between-class scatter SB(X).
Definitions of SW (X) and SB(X) are given as follows:

SW (X) =
∑c

i=1

∑
xk∈Xi

(xk −mi)(xk −mi)
T
, (6)

SB(X) =
∑c

i=1
ni(mi −m)(mi −m)

T
, (7)

where xk indicates the k-th column of X; mi and m are

mean vectors of Xi and X respectively; and ni denotes the

number of samples belonging to the ith class.

Thus the discrimination item f(X) can be defined as

f(X) = tr(SW (X))− tr(SB(X)) + η ‖X‖2F , (8)

where ‖X‖2F is an elastic term, and η is a carefully selected

parameter to make f(X) be convex. Readers can refer to [9]

for more details about the convexity of f(X). By imposing

the Fisher discrimination criterion on the coefficient matrix

X , such selected representatives, which can be regarded

as a condensed view of the whole dataset, will have the

discriminant ability.

Incorporating Equations (4) and (8) into Equation (3), we

can obtain the final formulation of the proposed model:

min
X

‖Y − Y X‖2F +α ‖X‖2,1 +
β
(
tr(SW (X))− tr(SB(X)) + η ‖X‖2F

)
.

(9)

By minimizing the above objective function, we can select a

discriminative representative subset of a given dataset. Those

selected representatives can not only appropriately describe

the entire dataset but also can be expected to achieve a good

performance in terms of classification.

C. Optimization

To optimize the objective function in Equation (9), many

convex optimization methods can be employed. In this paper,

we implement the widely used Proximal Gradient method [11]

to minimize the objective function. To apply the Proximal

Gradient method to solve the optimization problem of our

model, we rewrite the objective function in Equation (9) as

min
X

Q(X) + αΩ(X), (10)

where Q(X) is a smoothly differentiable function and Ω(X)
is a non-differentiable function. Q(X) and Ω(X) are defined

Algorithm 1 The SSDRS algorithm

Input:
Original data matrix Y ∈ R

m×N ;

Number of representatives k;

Output:
The representative subset Yrep = [yi1 ,yi2 , . . . ,yik ] ∈
R

m×k (k < N)
1: Initialize the coefficient matrix X with zeros

2: while not converge do
3: Compute the gradient of Q(X) which is denoted by

∇Q (X);
4: Set the parameter L with a line-search;

5: Update the coefficient matrix X by solving

min
X

1
2

∥∥X − (
Xt − 1

L∇Q (Xt)
)∥∥2

F
+α

L ‖X‖2,1
with the Proximal Gradient method [10];

6: end while
7: Select k representatives Yrep from the dataset correspond-

ing to the nonzero rows of X;

as follows:

Q(X) = ‖Y − Y X‖2F +

β
(
tr(SW (X))− tr(SB(X)) + η ‖X‖2F

)
= ‖Y − Y X‖2F +β

c∑
i=1

‖Xi −Mi‖2F−

β
c∑

i=1

ni ‖mi −m‖22 + βη ‖X‖2F ,
(11)

Ω(X) = ‖X‖2,1, (12)

where Mi is the mean vector matrix (by taking ni mean

vectors mi as its column vectors) of class i. The Proximal

Gradient method is used to optimize Equation (10) by itera-

tively minimizing the following problem

min
X

1

2

∥∥∥∥X −
(
Xt − 1

L
∇Q

(
Xt

))∥∥∥∥
2

F

+
α

L
‖X‖2,1, (13)

where Xt is the coefficient matrix at iteration t, L > 0
is a parameter which should be an upper bound on the

Lipschitz constant of ∇Q and is typically set with a line-

search. According to [10], we can obtain the coefficient matrix

at iteration t+ 1, denoted by Xt+1, as

Xt+1 (i, :) =

{ ‖pi‖−α
L

‖pi‖ pi, if α
L < ‖pi‖

0, otherwise
(14)

where Xt+1 (i, :) denotes the ith row of Xt+1, pi ∈ P =
[p1;p2; . . . ;pi; . . .] =

(
Xt − 1

L∇Q (Xt)
)
.

The proposed algorithm is summarized in Algorithm 1. The

coefficient matrix X is iteratively updated untill convergence.

Since the indices of nonzero rows of X have correspondence

with the indices of columns of the original dataset Y , a few

representatives of data points can be selected according to the

nonzero rows of X .
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Fig. 1: Brief description of the Society Raffles video and 9 representatives found by our algorithm. Those selected representatives bounded
in red rectangles capture main events and well summarize the video. (best viewed in color)

Fig. 2: Some frames of the New Indians multi-shot video and 7 representatives found by our algorithm. Those representatives bounded
in red rectangles properly describe the whole frame sequences of the video. Since scene 2 contains more activities than other scenes, our
algorithm finds 3 representative frames for scene 2 and 1 representative frame for other scenes. (best viewed in color)

IV. EXPERIMENTAL RESULTS

To evaluate the performance of our proposed algorithm in

finding the discriminative representatives of real datasets, we

apply the SSDRS algorithm to video summarization and image

classification. Since data points in some classes are more

difficult to be expressed than those in other categories, we fix

the total number of representatives instead of fixing the number

of representatives for each class. Furthermore, data points with

small pairwise coherence will lead to too-close representatives,

thus we prune the representative subset to prevent them from

being too close to each other according to [12].

A. Video Summarization
In order to demonstrate the effectiveness of our proposed

algorithm, we apply SSDRS to the video summarization task.

We firstly choose a 1,536-frame one-shot video from [13].

The video consists of several continuous events under the

same background. After employing the SSDRS algorithm, 9

representatives for the video are obtained, which are bounded

in red rectangles, as shown in Fig. 1. These 9 representative

frames capture main events of the video as follows: a man

comes into the room; the man is talking with the thief near

the window; a woman appears in the scene; another man gets

in accompany with the woman; the man which stands on the

left of the woman leaves the room; the woman and the first

man sit down and talk with each other; the man steals the

woman’s tiara and gets ready to leave; the woman sees the

thief standing at the window; the woman is fainting on the sofa

and the thief has gone. Through Fig. 1, we can see that those

representatives selected by our algorithm can well summarize

the whole video sequence and capture all different events.

Next, we consider a 706-frame multi-shot video taken from

[13]. The video consists of 5 shots, which describe 5 different

scenes, and each scene contains continuous activities. We

apply SSDRS to the video and obtain 7 representatives. A few

frames of the video and the selected representative frames lied

in the red rectangles are shown in Fig. 2. Those representative

frames summarize the video as follows: a boat is sailing at the

sea; a man starts to turn the rudder; the man fixes the rudder

in a proper location; the man tries to rotate the rudder back;

the other representative frames capture the scene of the boat’s

bow and sea; the scene of the man’s face characteristic and the

scene of mountains respectively. From Fig. 2, we can see that

those representative frames selected by our algorithm describe

the 5 scenes of the video well. Moreover, as scene 2 contains

several different continuous activities, 3 representative frames

are extracted to describe the continuous activities. Scene 1,

scene 3, scene 4, and scene 5 have 1 representative frame

respectively.

Experimental results in terms of video summarization

demonstrate the effectiveness of our algorithm in finding a

representative subset of data points. Those selected representa-

tives can well represent the whole video and are differentiable

as well.

B. Image Classification

Furthermore, we evaluate the performance of our selected

representatives in the task of image classification.

1404



TABLE I: Classification results on the Extended YaleB database
with 7 representatives of 51 training samples in each class.

NN NS SRC SVM
Rand 30.40% 71.30% 82.60% 87.90%

Kmedoids 37.90% 80.00% 89.10% 94.50%
SMRS 33.80% 84.00% 93.10% 96.80%
SSDRS 49.16% 85.21% 92.67% 88.13%

TABLE II: Classification results on the COIL-20 database with 5
representatives of 50 training samples in each class.

NN NS SRC SVM
Rand 80.00% 81.36% 83.86% 83.18%

Kmedoids 86.36% 86.36% 86.59% 86.82%
SMRS 87.04% 89.77% 91.36% 92.27%
SSDRS 93.41% 93.41% 92.05% 96.13%

Datasets: In this paper, all the experiments are conducted

on four publicly available datasets. The first dataset is COIL-

20 [14], which consists of gray-scale images of 20 objects,

and each object contains 72 gray-scale images. The second

dataset used in our experiments is the Extended YaleB face

database (YaleB) [15]. This database contains face images of

38 individuals under the situation of fixed pose and varying

illumination. The third dataset we use is a subset of the USPS

digits database (subUSPS) [16], which contains 1000 digits

images. This dataset consists of 10 classes corresponding to

handwritten digits, and 100 images are randomly selected

for each class. The last dataset is the Multiple Feature Data

Set (MFEAT) which is taken from UCI Machine Learning

Repository [17]. MFEAT is a handwritten database extracted

from a Dutch Public utility and contains 2,000 digits images.

These images are divided into 10 classes and each class

contains 200 digit images.

Settings: In order to demonstrate the effectiveness of our

algorithm in finding representatives, we compare our algorithm

with simple random selection (Rand) [4], Kmedoids [3] and

Sparse Modeling Representative Selection (SMRS) [2]. We

employ all the algorithms to select a few representatives, which

are treated as the training sets of several standard classification

algorithms for performance evaluation. The classifiers include

Nearest Neighbor (NN) [8], Nearest Subspace (NS) [10],

Sparse Representation-based Classification (SRC) [18] and

Linear Support Vector Machine (SVM) [8]. For each class,

we randomly select 50 (COIL-20), 51 (YaleB), 50 (subUSPS)

and 150 (MFEAT) samples for training and the remaining

samples are used for testing. To have a fair comparison for all

the algorithms, on average we select 5 (COIL-20), 7 (YaleB),

4 (subUSPS) and 10 (MFEAT) representatives from training

samples for each class. As the performance of Kmedoids

strongly depends on initialization, we use the same strategy

as [2]. For the parameter η used in our algorithm, it is set

as 1 for all the experiments. In our method, we fine tune

the parameters α and β in Eq. (9) by searching the grid of{
10−5, 10−4, . . . 104, 105

}
.

Results and Analysis: The classification performance on

four datasets is exhibited in TABLE I, TABLE II, TABLE III

and TABLE IV respectively. These experimental results indi-

TABLE III: Classification results on the MFEAT digits database
with 10 representatives of 150 training samples in each class.

NN NS SRC SVM
Rand 75.03% 74.15% 77.20% 76.60%

Kmedoids 78.00% 78.20% 77.20% 77.40%
SMRS 77.20% 76.20% 75.20% 79.20%
SSDRS 78.60% 76.60% 78.00% 79.20%

TABLE IV: Classification results on the subUSPS digits database
with 4 representatives of 50 training samples in each class.

NN NS SRC SVM
Rand 57.30% 59.17% 57.61% 65.80%

Kmedoids 62.20% 64.40% 65.80% 69.60%
SMRS 64.60% 69.80% 68.60% 71.00%
SSDRS 71.40% 76.80% 72.00% 78.60%

cate that representatives found by our algorithm mostly achieve

the highest classification performance on all the datasets.

Compared with the state-of-the-art SMRS method, our

algorithm has 7% improvement over SMRS averagely for the

simplest NN classifier. For NS, SRC and SVM classifiers, our

algorithm averagely has 3%, 2% and 1% improvements over

SMRS respectively. This indicates that our algorithm works

better than SMRS for almost all the classifiers. Moreover,

our algorithm achieves significant improvement on COIL-20

and subUSPS, and has some improvements on YaleB and

MFEAT in most cases. Compared with SMRS, our algorithm

adds the discriminant ability to the selected representatives,

thus making SSDRS more suitable for classification tasks.

Though a few representatives are selected as the training set,

SSDRS achieves good image classification performance based

on the representational capacity and discriminant ability of the

selected representatives.

Compared with the Rand and Kmedoids methods, our

algorithm averagely has 12% and 7% improvements for the

simplest NN classifier respectively. We also can see that our

algorithm has significant improvements on NS, SRC and SVM

classifiers. Moreover, we can see that SMRS outperforms

Rand and Kmedoids in most cases. Together with the best

classification results our algorithm gains, it indicates that

sparse representation based representative selection methods

are more effective than the algorithms with cluster structure

assumptions. The good performance of Kmedoids in TABLE

III may be due to the fact that the MFEAT dataset comes

from a low-dimensional subspace, which is the underlying

assumption of the NS classifier. Since the Extended YaleB

face database consists of images under varying illumination,

the inner and intra class distances of training data will be

changed when the representative subset is used to replace the

entire data. Maybe this is the reason why it leads to the large

gap between the NN classifier and other classifiers in TABLE

I.

Moreover, we also investigate the classification performance

versus different numbers of representatives. To achieve this

goal, we implement the proposed algorithm on the COIL-20

dataset to select on average 100, 140, 220 and 300 representa-

tives respectively. In order to have a fair comparison, we select

the same number of representatives for the competing meth-
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Fig. 3: Accuracies vs. the number of representatives on the COIL-20 database. Classification performances of our algorithm and baselines
using NN, NS, SRC and SVM classifiers are exhibited in (a), (b), (c) and (d), respectively.

ods. Experimental results shown in Fig. 3 definitely indicate

that our proposed algorithm outperforms the state-of-the-art

methods. For all the algorithms, classification performances

are improved when the number of representatives increases.

This is due to the fact when more representatives are selected,

they are more informative about the original dataset. Since our

proposed algorithm performs much better than the competing

methods when the number of representatives are small, this

indicates that the representatives selected by our algorithm are

more informative than the competing methods.

V. CONCLUSION

In this paper, we have proposed a structure sparsity based

discriminative representative selection algorithm to find a

representative subset of data points which simultaneously have

the representational capacity and discriminant ability. Repre-

sentatives selected by our algorithm not only can appropriately

describe the entire dataset but also can lead the representatives

belonging to different classes to be discriminative. Further-

more, representatives found by our algorithm can achieve a

good classification performance due to the discriminant ability

of the representatives. The objective function of our model

consists of two parts. The first part is the reconstruction fidelity

term which aims at finding a few representatives to express the

whole dataset properly; the second part is the discrimination

constraint imposed on the coefficient matrix which can ensure

those selected representatives to be discriminative. Experi-

ments conducted in terms of video summarization provide

an intuitive interpretation for the representation ability and

discrimination ability of representatives. And experimental

results in terms of image classification also demonstrate the

superiority of our proposed algorithm to the state-of-the-art

representative selection methods.

ACKNOWLEDGMENT

This work is jointly supported by National Natural Science

Foundation of China (61175003, 61135002), Hundred Talents

Program of CAS, National Basic Research Program of China

(2012CB316300).

REFERENCES

[1] L. L. Dalton, “Rank revealing qr factorizations,” Linear Algebra
and Its Applications, 1997.

[2] E. Elhamifar, G. Sapiro, and R. Vidal, “See all by looking at
a few: Sparse modeling for finding representative objects,” in
Computer Vision and Pattern Recognition, 2012.

[3] L. Kaufman and P. Rousseeuw, “Clustering by means of
medoids,” In Y. Dodge(Ed.), Statistical Data Analysis Based
on the L1 Norm, 1987.

[4] J. A. Tropp, “Column subset selection, matrix factorization, and
eigenvalue optimization,” in ACM-SIAM Symposium on Discrete
Algorithms, 2009.

[5] B. J. Frey and D. Dueck, “Clustering by passing messages
between data points,” Science, pp. 972–976, 2007.

[6] L. Balzano, R. Nowak, and W. Bajwa, “Column subset selection
with missing data,” in NIPS Workshop on Low-Rank Methods
for Large-Scale Machine Learning, vol. 1, 2010.

[7] E. Esser, M. Moller, S. Osher, G. Sapiro, and J. Xin, “A convex
model for nonnegative matrix factorization and dimensionality
reduction on physical space,” IEEE Transactions on Image
Processing, vol. 21, no. 7, pp. 3239–3252, 2012.

[8] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification.
John Wiley & Sons, 2012.

[9] M. Yang, L. Zhang, X. Feng, and D. Zhang, “Fisher dis-
crimination dictionary learning for sparse representation,” in
International Conference on Computer Vision, 2011.

[10] G. Liu, Z. Lin, and Y. Yu, “Robust subspace segmentation by
low-rank representation,” in ICML, 2010.

[11] A. Beck and M. Teboulle, “A fast iterative shrinkage-
thresholding algorithm for linear inverse problems,” SIAM Jour-
nal on Imaging Sciences, vol. 2, no. 1, pp. 183–202, 2009.

[12] M. Aharon, M. Elad, and A. Bruckstein, “K-svd: An algorithm
for designing overcomplete dictionaries for sparse representa-
tion,” IEEE Transactions on Image Processing, pp. 4311–4322,
2006.

[13] R. Vidal, “Recursive identification of switched arx systems,”
Automatica, pp. 2274–2287, 2008.

[14] S. A. Nene, S. K. Nayar, and H. Murase, “Columbia object
image library (coil-20),” Dept. Comput. Sci., Columbia Univ.,
New York.[Online] http://www. cs. columbia. edu/CAVE/coil-20.
html, vol. 62, 1996.

[15] J. Ho, M.-H. Yang, J. Lim, K.-C. Lee, and D. Kriegman,
“Clustering appearances of objects under varying illumination
conditions,” in Computer Vision and Pattern Recognition, vol. 1,
2003.

[16] J. J. Hull, “A database for handwritten text recognition re-
search,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, pp. 550–554, 1994.

[17] M. Van Breukelen, R. P. Duin, D. M. Tax, and J. d. Hartog,
“Handwritten digit recognition by combined classifiers,” Kyber-
netika, pp. 381–386, 1998.

[18] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Ro-
bust face recognition via sparse representation,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 31,
no. 2, pp. 210–227, 2009.

1406


