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ABSTRACT
With the rapid growth of Internet applications, there are
more and more entities in interaction scenarios, and thus
collaborative prediction for multi-entity interaction is be-
coming a significant problem. The state-of-the-art methods,
e.g., tensor factorization and factorization machine, predict
multi-entity interaction based on calculating the similari-
ty among all entities. However, these methods are usually
not able to reveal the joint characteristics of entities in the
interaction. Besides, some methods may succeed in one spe-
cific application, but they can not be extended effectively
for other applications or interaction scenarios with more en-
tities. In this work, we propose a Hierarchical Interaction
Representation (HIR) model, which models the mutual ac-
tion among different entities as a joint representation. We
generate the interaction representation of two entities via
tensor multiplication, which is preformed iteratively to con-
struct a hierarchical structure among all entities. Moreover,
we employ several hidden layers to reveal the underlying
properties of this interaction and enhance the model per-
formance. After generating final representation, the predic-
tion can be calculated using a variety of machine learning
methods according to different tasks (i.e., linear regression
for regression tasks, pair-wise ranking for ranking tasks and
logistic regression for classification tasks). Experimental re-
sults show that our proposed HIR model yields significant
improvements over the competitive compared methods in
four different application scenarios (i.e., general recommen-
dation, context-aware recommendation, latent collaborative
retrieval and click-through rate prediction).

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Information
Filtering
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1. INTRODUCTION
Nowadays, collaborative prediction plays an importan-

t role in many real-world applications, e.g., recommender
systems, information retrieval and social network analysis.
With the rapid growth of web applications, there are more
and more entities in one interaction scenario. For example,
there are three entities in tag recommendation (i.e., user,
item and tag) [25, 17, 20] and latent collaborative retrieval
(i.e., user, query and document) [27, 2], and three or more
entities in context-aware recommendation (i.e., user, query
and several contexts) [4, 19, 21, 10]. Moreover, in some
probability prediction applications, e.g., click-through rate
prediction [12, 29, 14], there are even more entities in an in-
teraction situation (e.g., device, website, application, adver-
tisement and position). Accordingly, it is necessary to mod-
el joint characteristics of entities and collaboratively predict
interaction among multiple entities.

Matrix factorization [13, 8] is widely used for interaction
prediction between two entities, e.g., users and items in gen-
eral recommendation. And matrix factorization based meth-
ods have been extensively studied, some of which, e.g., ten-
sor factorization [28] and factorization machine [16], are im-
plemented for predicting multi-entity interaction, e.g., user,
query and document in latent collaborative retrieval. Both
tensor factorization and factorization machine predict the
interaction based on the similarity among all entities, which
seems intuitive and reasonable. However, this does not con-
form to situations of various applications. Using latent col-
laborative retrieval as an example, both tensor factorization
and factorization machine compute the similarity among us-
er, query and document to predict their interaction. How-
ever, the similarity between the user and the query does not
contribute to document selection of this user, and final selec-
tion is not merely based on the similarity between the user
and the document or the similarity between the query and
the document. We should measure the correlation between
the document and the joint representation of user and query.
In addition, there is another disadvantage of conventional
methods. They only compute the similarity based on cor-
responding dimensional values in the latent vectors, which
does not allow rich high-order calculation among values of
different dimensions. Therefore, to be general, we provide
a latent representation for a multi-entity interaction, which
describes how these entities would act being together with
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Figure 1: Illustration of the hierarchical structure of
multi-entity interaction, using latent collaborative
retrieval as an example.

each other and can reveal their high-order relation. As il-
lustrated in Figure 1, when a user retrieves with a query,
capturing the mutual action of the user and the query, a
joint representation is generated. Similarly, when the user
views a document, there will be a joint representation of us-
er, query and document, which indicates how this user will
prefer a document while retrieving with the query. Based on
this joint representation, we could make prediction for the
multi-entity interaction.

Recent studies on representation learning [1] in different
areas give us great inspiration. Recently, joint representa-
tion of entities is employed for linked data [9] and structured
data [24]. In recent works of natural language processing,
using tensor multiplication, neural tensor networks are suc-
cessfully used in learning the representation of two entities
for knowledge base completion [22] and the representation of
a sentence for semantic compositionality [23]. Tensor multi-
plication is also used in modeling contextual representation
for context-aware recommendation [21, 10].

In this paper, we present a novel method to learn a Hi-
erarchical Interaction Representation (HIR) model for pre-
dicting interaction among multiple entities. In our method,
each entity is represented as a latent vector. And we use
three-dimensional tensor multiplication to capture the joint
characteristics of two entities. Tensor multiplication allows
high-order calculation between these two entities. Moreover,
rather than achieving a score of the interaction in conven-
tional methods, HIR generates an interaction representa-
tion, which allows interacting with the next entity and can
be widely implemented for various tasks. In a multi-entity
interaction scenario with n entities, this tensor multiplying
procedure can be performed iteratively, which forms a hier-
archical architecture with n layers. The ith layer presents
the interaction representation of the first i entities. The
nth layer is the final representation of all the entities, which
describes their joint characteristics. With such a hierarchi-
cal structure, we can also add new entities directly with-
out re-training the former representations. Based on the
final representation, we could select learning methods ac-
cording to different application tasks for collaborative pre-
diction (i.e., linear regression for regression tasks, pair-wise
ranking method for ranking tasks and logistic regression for
classification tasks).

The main contributions of this work are listed as follows:

• We model the joint representation of multiple types
of entities in an interaction scenario, which presents

a novel perspective on collaboratively modeling and
predicting the entity interaction.

• Using the tensor multiplication, HIR allows high-order
calculation among different types of entities, which re-
veals the underlying properties and relations among
entities.

• Experiments conducted on four different tasks show
that HIR is effective and clearly outperforms both gen-
eral methods and state-of-the-art task-specific meth-
ods.

The rest of the paper is organized as follows. In section
2, we review some related work on both general methods
and task-specific methods. Section 3 details our HIR mod-
el. In section 4, we introduce the learning methods of the
HIR model. In section 5, we report experimental results in
terms of four tasks and compare with several state-of-the-art
methods. Section 6 concludes our work and discusses future
research.

2. RELATED WORK
In this section, we briefly review related work on both

general and task-specific methods, i.e., context-aware rec-
ommendation, latent collaborative retrieval, tag recommen-
dation and click-through rate prediction.

2.1 General Methods
Matrix Factorization (MF) [13, 8] has become one of the

state-of-the-art approaches to collaborative prediction. The
basic objective of MF is to factorize a matrix into two low
rank matrices, each of which represents the latent factors
of entities, e.g., users and items in general recommendation.
The original matrix can be approximated via the multiply-
ing calculation. However, MF is not able to be implemented
directly for collaborative prediction problem of multiple en-
tities.

MF has been extended nowadays. Tensor Factorization
(TF) [28] extends MF from two dimensions to three or even
higher dimensions, which can be utilized for predicting multi-
entity interaction. And Factorization Machine (FM) [16]
gives a further extension of TF by modeling all interactions
between pairs of entities. FM is a flexible model, and other
state-of-the-art factorization models including TF, SVD++
[5] and timeSVD++ [6] can be implemented using FM by
defining the input data or features [16]. Both TF and FM
are successfully used in tag recommendation [25, 17, 20] and
context-aware recommendation [4, 19]. FM also leads great
improvement in click-through rate prediction [14]. However,
predicting multi-entity interaction based on simply calcu-
lating the similarity among all entities, TF and FM are not
able to better reveal the joint characteristics of interacting
entities. Moreover, because FM uses the pair-wise interac-
tion between entities to model the prediction of multi-entity
interaction, this brings FM another disadvantage that the
number of pairs grows exponentially with the number of en-
tities.

2.2 Task-Specific Methods
In this subsection, we introduce some research works in d-

ifferent tasks that are related to the collaborative prediction
for multi-entity interaction.



The context modeling approaches have made significan-
t improvement for context-aware recommendation, which
contains three or more entities (i.e., user, query and sev-
eral contexts). Recent works on context modeling have fo-
cused on integrating contextual information with user-item
rating matrix and building factorization models. Incorpo-
rating tensor factorization, multiverse recommendation [4]
represents the user-item rating matrix with contextual in-
formation as a user-item-context rating tensor, which is fac-
torized with Tucker decomposition [26]. And FM is appli-
cable to a variety of contexts by specifying only the input
data [19]. Random decision trees are also been applied here,
in which contexts are split and general matrix factorization
is performed on each leaf [11]. Furthermore, the work of
[30] considers user attributes as priors for user latent vec-
tors, and a transfer matrix is used to generate latent vectors
from original ones. Similarly, Heterogeneous Matrix Factor-
ization (HeteroMF) [3] generates context-specific latent vec-
tors of entities using a context-dependent transfer matrix
and the original latent vectors of entities. CARS2 [21] and
Contextual Operating Tensor (COT) [10] model represents
entities in a specific context using contextual representation
and outperform previous methods in context-aware recom-
mendation. Both of them model contexts as latent vectors,
and generate contextual representations of users and items
using tensor multiplication.

Recently, modeling the interaction among user, query and
document, Latent Collaborative Retrieval (LCR) [27] has
been proposed and extended to social network [2]. LCR
represents a user with a matrix and generates the joint rep-
resentation of user and query via multiplication. Then the
prediction is given based on the inner product of latent rep-
resentation of query and joint representation of user and
query. Modeling the interaction among user, item and tag,
tag recommendation can also be viewed as a LCR problem,
in which a user retrieves tags with an item. Treating user,
item and tag as three dimensions of a tensor, TF has been
successfully used in this problem [25, 17]. As an extended
version of TF, FM is also applied in tag recommendation
and has become one of the state-of-the-art methods [20].

In the complex click-through rate (CTR) prediction prob-
lem, there may exist several entities such as user, device,
website, application, advertisement, position and so on. Due
to its ease of implementation and promising performance,
Logistic regression (LR) has been widely used for CTR pre-
diction, especially in industrial systems [12, 29]. LR can be
used for the multi-entity interaction prediction with one-hot
representation of each entity. However, LR or other clas-
sifiers have difficulties in discovering latent relation among
entities, and the final prediction of LR could be viewed as
the sum of biases of all the entities. Recently, as a repre-
sentative method of factorization models, FM is applied for
CTR prediction and brings a great improvement [14].

The methods mentioned above achieve delightful results
in respective applications, which also greatly motivates our
work. But they are unable to be extended effectively for
other applications or interaction with more entities.

3. REPRESENTATION OF MULTI-ENTITY
INTERACTION

In this section, we introduce our proposed hierarchical in-
teraction representation. We introduce the definition and

notations of our problem at first. Then we present the in-
teraction representation of two entities, followed by the hi-
erarchical representation of more entities. Finally, we show
how to enhance the model via employing hidden layers.

3.1 Problem Definition
The problem we study in this paper can be described as

follows. In an interaction scenario, suppose that we have an
interaction prediction task with n types of entities denoted
by {E(1), ..., E(n)}. For each type of entity, we have E(m) =

{e(m)
1 , e

(m)
2 , ...}, where e

(m)
i ∈ Rd and m ∈ {1, ..., n}. In the

multi-entity interaction, the relation among e
(1)
k1
, ..., e

(n)
kn

is
denoted by yk1,...,kn . The task of collaborative prediction
for multi-entity interaction is to give a prediction ŷk1,...,kn

based on all the entities e
(1)
k1
, ..., e

(n)
kn

.
Here, using latent collaborative retrieval as an example,

there will be three types of entities (i.e., user, query, doc-

ument) denoted by {E(1), E(2), E(3)}. Specifically, users,

queries and documents are denoted by E(1) = {e(1)1 , e
(1)
2 , ...},

E(2) = {e(2)1 , e
(2)
2 , ...} and E(3) = {e(3)1 , e

(3)
2 , ...} respectively.

Each user, query and document are denoted as e
(1)
i ∈ Rd,

e
(2)
i ∈ Rd and e

(3)
i ∈ Rd. Then the relation among user,

query and document is denoted as yk1,k2,k3 .
In this work, we would jointly model all the entities with

an interaction representation r
(n)
k1,...,kn

, and m-subset of the

entities with an interaction representation r
(m)
k1,...,km

. The in-
teraction representation describes the joint characteristics of
entities. We could make prediction of their interaction based
on this representation using various learning methods (i.e.,
linear regression, logistic regression and pair-wise ranking).

3.2 Interaction Representation
We first introduce the case with two entities. To get the

joint representation of two entities, we need to employ an
interaction function that satisfies:

r
(2)
k1,k2

= f (2)
(
e
(1)
k1
, e

(2)
k2

)
, (1)

where f (2) (·) denotes an interaction function of two entities.

Latent vector r
(2)
k1,k2

describes how the two entities would be-
have being together in an interaction scenario. For instance,
if there are user and movie as two entities, their joint rep-
resentation captures the characteristics of a user watching a
movie, and models how much he or she likes the movie.

To capture the high-order relation between two entities,
we use tensor multiplication, as shown in the bottom square
of Figure 2. Here, we compute the interaction representation
as:

r
(2)
k1,k2

=

[(
e
(2)
k2

)T
T (1)

]
e
(1)
k1

, (2)

where T (1) is a d × d × d tensor, modeling the interaction

of these two entities. The tensor multiplication
(
e
(2)
k2

)T
T (1)

can be defined as:

(
e
(2)
k2

)T
T (1) =


(
e
(2)
k2

)T
T

(1)
1

...(
e
(2)
k2

)T
T

(1)
d

 , (3)
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Figure 2: Overview of the learning procedure of
HIR. Interaction representation of two entities is
shown in the bottom square. Each layer of HIR
is shown in the middle square. The top part illus-
trates hidden layers between interaction representa-
tion and prediction.

and Equation 2 can be calculated as:

r
(2)
k1,k2

=


(
e
(2)
k2

)T
T

(1)
1 e

(1)
k1

...(
e
(2)
k2

)T
T

(1)
d e

(1)
k1

 , (4)

where T
(1)
m denotes the mth slice of the tensor T (1), and each

slice is a d× d matrix.
With such computation, the tensor can model the rich

high-order relation between entities. Each slice of the tensor
can capture a specific type of relation between these entities.

Now, to predict the interaction of the two entities, we can
use a simple linear regression, which can be concluded as:

ŷk1,k2 = WT

[(
e
(2)
k2

)T
T (1)

]
e
(1)
k1

, (5)

where W is a n-dimensional vector denoting the weights of
regression.

3.3 Hierarchical Interaction Representation
After introducing the joint representation of two entities,

we would model the joint representation of more entities in
general cases. For more entities, we need another interaction
function that satisfies:

r
(n)
k1,...,kn

= f (n)
(
e
(1)
k1
, ..., e

(n)
kn

)
, (6)

where f (n) (·) denotes an interaction function of n entities.

r
(n)
k1,...,kn

describes the joint characteristics of all the entities
in an interaction scenario.

To generate the interaction representation of n entities, we
perform the tensor multiplication iteratively, which forms a
hierarchical structure with n layers. These procedures can
be concluded as:

r
(1)
k1

= e
(1)
k1

r
(m)
k1,...,km

=

[(
e
(m)
km

)T
T (m−1)

]
r
(m−1)
k1,...,km−1

, (7)

where 1 < m ≤ n, and T (m−1) is a d×d×d tensor, generating
the interaction representation in the mth layer. Each layer
of HIR is illustrated in the middle square of Figure 2. Thus,
the joint representation of all entities can be calculated as:

r
(n)
k1,...,kn

=

n∏
i=2

[(
e
(i)
ki

)T
T (i−1)

]
e
(1)
k1

. (8)

Taking latent collaborative retrieval for an example, there
are three entities, i.e., user, query and document. Their in-
teraction representation captures how a user prefers a docu-
ment while retrieving with a query, which can be calculated
as:

r
(3)
k1,k2,k3

=

[(
e
(3)
k3

)T
T (2)

]
[
(
e
(2)
k2

)T
T (1)]e

(1)
k1

. (9)

With the joint representation, we can compute the collab-
orative prediction. A variety of machine learning methods
can be used according to the specific task. For example, with
a linear regression method, the prediction of multi-entity in-
teraction can be generated as:

ŷk1,...,kn = WT
n∏

i=2

[(
e
(i)
ki

)T
T (i−1)

]
e
(1)
k1

, (10)

where W is a n-dimensional vector denoting the weights
of regression. Moreover, in the task of latent collaborative
retrieval, the prediction can be generated as:

ŷk1,k2,k3 = WT

[(
e
(3)
k3

)T
T (2)

] [(
e
(2)
k2

)T
T (1)

]
e
(1)
k1

. (11)

3.4 Multiple Hidden Layers
Deep models with multiple layers have shown delightful

performance in different areas [1]. As shown in the top
square of Figure 2, to enhance the ability of representa-
tion and to improve the performance of our model, we can
add several hidden layers between the joint representation

r
(n)
k1,...,kn

and the prediction ŷk1,...,kn .
Suppose we add nh hidden layers between the final repre-

sentation and the prediction. With each hidden layer mod-
eled by a matrix, the joint representation after hidden layers
can be calculated iteratively as:{

h
(0)
k1,k2,...,kn

= r
(n)
k1,k2,...,kn

h
(mh)
k1,k2,...,kn

= Hmhh
(mh−1)
k1,k2,...,kn

, (12)

where 1 ≤ mh ≤ nh, h
(mh)
k1,k2,...,kn

denotes the joint represen-
tation after mh hidden layers, and Hmh is a d × d matrix
of the mhth hidden layer. Combining interaction layers and
hidden layers, the overall formulation generating the joint



representation becomes:

h
(nh)
k1,...,kn

=

nh∏
i=1

Hi

n∏
i=2

[(
e
(i)
ki

)T
T (i−1)

]
e
(1)
k1

. (13)

Furthermore, with a linear regression method, the final pre-
diction can be made via:

ŷk1,...,kn = WT

nh∏
i=1

Hi

n∏
i=2

[(
e
(i)
ki

)T
T (i−1)

]
e
(1)
k1

, (14)

4. LEARNING FOR DIFFERENT TASKS
In this section, we introduce the learning process of the

HIR model in three different tasks, i.e., personalised rec-
ommendation, personalised ranking and click-through rate
prediction.

4.1 Collaborative Recommendation
In recommender systems with explicit rating values, the

interaction prediction in HIR becomes rating prediction, which
can be modeled as a regression problem. The model can be
calculated via a linear regression:

ŷk1,...,kn = WTh
(nh)
k1,...,kn

, (15)

where W denotes the weights of linear regression. Therefore,
HIR can be learned by minimizing the squared error [8], and
the objective function can be written as:

J =
∑

(yk1,...,kn − ŷk1,...,kn)2 +
λ

2
‖Θ‖2

=
∑

(yk1,...,kn −W
Th

(nh)
k1,...,kn

)2 +
λ

2
‖Θ‖2

, (16)

where Θ = {E, T,H,W} denotes all the parameters to be
estimated, and λ is a parameter to control the power of
regularization.

The derivations of J with respect to the parameters can
be calculated as:

∂J

∂W
= −2

∑
(yk1,...,kn −W

Th
(nh)
k1,...,kn

)h
(nh)
k1,...,kn

+ λW ,

∂J

∂h
(nh)
k1,...,kn

= −2
∑

(yk1,...,kn −W
Th

(nh)
k1,...,kn

)W+λh
(nh)
k1,...,kn

.

4.2 Personalized Ranking
In recommender systems and information retrieval, differ-

ent from scenarios with explicit feedbacks, scenarios with
implicit feedbacks (i.e., a binary signal such as click, buy,
view, etc) are more common in real-world applications. This
can be treated as a ranking problem. Bayesian Personalized
Ranking (BPR) [18] is a state-of-the-art pairwise ranking
method for the implicit feedback data. The basic assump-
tion of BPR is that a user prefers a selected item than a
negative item. So, using HIR in the BPR framework, we
need to maximize the following function:

p(kn �k1,k2,... k
′
n) = g(ŷk1,k2,...,kn − ŷk1,k2,...,k′n) , (17)

where kn denotes a positive sample, k′n denotes a negative
sample, and g(x) is a nonlinear function which we select as
g(x) = 1/(1 + exp(−x)). Note that, the prediction here is
based on linear regression as shown in Equation 15. Incorpo-
rating the negative log likelihood, we can solve the following

objective function equivalently:

J = −
∑

ln(p(kn �k1,k2,... k
′
n)) +

λ

2
‖Θ‖2

= −
∑

ln

(
1

1 + exp(−y(kn �k1,k2,... k
′
n))

)
+
λ

2
‖Θ‖2

=
∑

ln(1 + exp(−y(kn �k1,k2,... k
′
n)) +

λ

2
‖Θ‖2

=
∑

ln(1 + exp(−WTh(kn �k1,k2,... k
′
n))) +

λ

2
‖Θ‖2

,

(18)
where

y(kn �k1,k2,... k
′
n) = ŷk1,k2,...,kn − ŷk1,k2,...,k′n ,

h(kn �k1,k2,... k
′
n) = h

(nh)
k1,k2,...,kn

− h(nh)

k1,k2,...,k′n
.

The derivations of J with respect to the parameters can
be calculated as:

∂J

∂W
= −

∑
q(kn �k1,k2,... k

′
n)h(kn �k1,k2,... k

′
n) + λW ,

∂J

∂h
(nh)
k1,k2,...,kn

= −
∑

q(kn �k1,k2,... k
′
n)W + λh

(nh)
k1,k2,...,kn ,

∂J

∂h
(nh)

k1,k2,...,k′n

=
∑

q(kn �k1,k2,... k
′
n)W + λh

(nh)

k1,k2,...,k′n ,

where

q(kn �k1,k2,... k
′
n) =

exp(−WTh(kn �k1,k2,... k
′
n))

1 + exp(−WTh(kn �k1,k2,... k
′
n))

.

4.3 Click-Through Rate Prediction
Predicting the probability of clicking under a specific con-

text, click-through rate prediction can be treated as a clas-
sification problem. As regular models for CTR prediction
[12, 29], we incorporate logistic regression, and the predic-
tion becomes:

ŷk1,...,kn =
1

1 + exp(−WTh
(nh)
k1,...,kn

)
, (19)

where W denotes the weights of logistic regression. As in
regular logistic regression, we use the negative log likelihood
for model learning. The objective function can be written
as:

J = −
∑

(1− yk1,k2,...,kn) ln (1− ŷk1,k2,...,kn)

−
∑

yk1,k2,...,kn ln (ŷk1,k2,...,kn) +
λ

2
‖Θ‖2

=
∑

ln(1 + exp(−WTh
(nh)
k1,...,kn

))

+
∑

(1− yk1,k2,...,kn)WTh
(nh)
k1,...,kn

+
λ

2
‖Θ‖2

.

(20)
The derivations of J with respect to the parameters can

be calculated as:

∂J

∂W
= −

∑ exp(−WTh
(nh)
k1,...,kn

)

1 + exp(−WTh
(nh)
k1,...,kn

)
h
(nh)
k1,...,kn

+
∑

(1− ŷk1,k2,...,kn) + λW

,



∂J

∂h
(nh)
k1,...,kn

= −
∑ exp(−WTh

(nh)
k1,...,kn

)

1 + exp(−WTh
(nh)
k1,...,kn

)
W

+
∑

(1− ŷk1,k2,...,kn) + λh
(nh)
k1,...,kn

.

4.4 Iterative Parameter Learning
In three tasks mentioned above, the derivation ∂J

∂h
(nh)

k1,...,kn

has been calculated. Based on this derivation, we can cal-
culate the derivations of hidden layers and joint represen-
tation iteratively. Suppose we have ∂J

∂h
(mh)

k1,...,km

of the mhth

(0 < mh ≤ nh) hidden layer, we can calculate the deriva-
tions of parameters on this layer as:

∂J

∂Hmh

=
∂J

∂h
(mh)
k1,k2,...,kn

h
(mh−1)
k1,k2,...,kn

,

∂J

∂h
(mh−1)
k1,k2,...,kn

= HT
mh

∂J

∂h
(mh)
k1,k2,...,kn

.

On the first hidden layer, we can obtain the derivation of
the joint representation:

∂J

∂r
(n)
k1,...,kn

=
∂J

∂h
(0)
k1,...,kn

.

Now, with the derivation of the joint representation ∂J

∂r
(n)
k1,...,kn

,

we can calculate all the derivations iteratively. Suppose we
have ∂J

∂r
(m)
k1,...,km

of the mth (1 < m ≤ n) layer, we can cal-

culate the derivations of parameters on this layer as:

∂J

∂r
(m−1)
k1,...,km−1

=

[(
e
(m)
km

)T
T (m−1)

]T
∂J

∂r
(m)
k1,...,kn

,

∂J

∂e
(m)
km

=
[
(r

(m−1)
k1,...,km−1

)T (T (m−1))T
]T ∂J

∂r
(m)
k1,...,kn

,

∂J

∂T
(m−1)
i

= e
(m)
km

(
r
(m−1)
k1,...,km−1

)T ( ∂J

∂r
(m)
k1,...,kn

)
i

.

On the first layer, we can obtain the derivation of the first
entity:

∂J

∂e
(1)
k1

=
∂J

∂r
(1)
k1

.

After calculating all the derivations, a solution of learning
HIR can be obtained by using stochastic gradient descent
(SGD), which has been widely employed [8, 7]. Note that,
the learning method can be changed according to different
applications.

5. EXPERIMENTS
In this section, we empirically investigate the performance

of HIR. As shown in Table 1, we conduct our experiments
in four tasks: general recommendation with user and
movie, context-aware recommendation with user, item
and context, latent collaborative retrieval with user,
URL and tag, and click-through rate prediction with
device, website, application, advertisement and position. In

all experiments, we implement HIR with 0, 1 and 2 hid-
den layers, denoted as HIR, HIR+ and HIR++ respectively.
Then we analyze the impact of the dimensionality of latent
representations and examine the interacting order of enti-
ties in context-aware recommendation and latent collabora-
tive retrieval. Finally, we visualize representations in latent
collaborative retrieval.

5.1 Experimental Settings
Our experiments are conducted on four real datasets for

different applications:

• Movielens-10M1 is a widely used dataset for rating
prediction in recommender systems, which can be used
for performance evaluation for general recommenda-
tion. There are two entities in the dataset: user and
movie, with 10M observations.

• Food [15] is a dataset for rating prediction with con-
textual information. It is a suitable dataset for context-
aware recommendation and has been used in previous
works [4, 19, 21, 10]. This dataset contains three en-
tities: user, item and context, with 6.3k observations.
The contextual information captures the user’s hunger
degree and whether the user’s feeling about hunger is
real or virtual.

• Delicious2 contains three entities: user, URL and tag,
with about 0.4M observations. This dataset can be
used for latent collaborative retrieval when considering
URL as query and tag as document, which means a
user retrieves tags for an untagged URL. Similar to
[17], we use p-core3 for filtering the dataset and p is
chosen as 10.

• Avazu4 is a dataset for click-through rate prediction,
in which we extract five entities: device, website, ap-
plication, advertisement and position, with 24M obser-
vations. We conduct two experiments on this dataset
with the only difference of whether the entity position
is included.

For all the datasets, we use 70% for training, 20% for
testing, and the remaining 10% data as the validation set
for tuning parameters, i.e., the dimensions of latent repre-
sentations. And the regulation parameter is set as λ = 0.01.
Moreover, we have different evaluation metrics for different
tasks:

• Root Mean Square Error (RMSE) and Mean
Average Error (MAE) are the most popular met-
rics for rating prediction. We use them for general
recommendation and context-aware recommendation.
The smaller the value, the better the performance.

• Recall@k, Precision@k and F1-score@k are three
important metrics for ranking tasks. We use them for
latent collaborative retrieval. The evaluation score for
a given user -URL-tag triple is computed according to

1http://grouplens.org/datasets/movielens/
2http://grouplens.org/datasets/hetrec-2011/
3The p-core of the dataset is the largest subset of the dataset
with the property that every user, every item and every tag
has to occur in at least p posts.
4https://www.kaggle.com/c/avazu-ctr-prediction/data



Table 1: Experimental summarization

task problem dataset #entities entities compared methods evaluation metrics

recommendation regression Movielen-10M 2 user, movie MF, FM RMSE MAE

context-aware
regression Food dataset 3 user, item, context

MF, LR, TF,
RMSE, MAE

recommendation FM, CARS2, COT

lantent collaborative
ranking Delicious dataset 3 user, url, tag

MF, LR, recall@5, recall@10,
retreval TF, FM, LCR recall@20, MAP

click-through rate device, application,
prediction classification Avazu dataset 4/5 website, advertisment, LR, FM LogLoss

(position)

where the tag appears in the ranked list. We report
recall@k, precision@k and F1-score@k with k = 5, 10
and 20 in our experiments. The larger the value, the
better the performance.

• Mean Average Precision (MAP) is another com-
monly used metric for evaluation in ranking tasks. MAP
is a standard metric for evaluating the quality of ranked
lists, and its top-bias property is particularly impor-
tant for ranking tasks such as top-N recommendation
and information retrieval. We use it as a global evalu-
ation for latent collaborative retrieval. The larger the
value, the better the performance.

• LogLoss is commonly used for evaluation in click-
through rate prediction. The smaller the value, the
better the performance.

5.2 Compared Methods
We compare HIR with both general and task-specific meth-

ods:

• MF [13] is used as a baseline for modeling interaction
between two entities, i.e., general recommendation, ig-
noring context in context-aware recommendation and
ignoring user in latent collaborative retrieval.

• LR is a widely used classifier and used as a method for
click-through rate prediction [12, 29]. It can be imple-
mented based on one-hot representation for context-
aware recommendation and latent collaborative retrieval.

• TF [28] is a state-of-the-art method for context-aware
recommendation [4] and tag recommendation [25, 17].
We use it as a baseline for both context-aware recom-
mendation and latent collaborative retrieval.

• FM [16] is a compared and used as a baseline method
in all the four experiments, as it is a state-of-the-art
method used for different applications [20, 19, 14]. We
use LibFM5 to implement the method.

• CARS2 [21] and COT [10] are two state-of-the-art
methods for learning contextual representation and used
as compared methods for the context-aware recom-
mendation

• LCR [27, 2] is a state-of-the-art method for latent col-
laborative retrieval and implemented on the Delicious
dataset in our experiments.

5http://www.libfm.org/

5.3 Performance Comparison

5.3.1 General Recommendation
The top part of Table 2 illustrates the results measured by

RMSE and MAE on Movielens-10M, which show that HIR
achieves the best results in general recommendation com-
pared with MF and FM. HIR, HIR+ and HIR++ improve
the performance of FM by 0.6%, 1.1% and 1.5% respectively.
The results show that the high-order tensor multiplication
in HIR can better represent the joint characteristics of user -
item pair and thus improve the performance of collaborative
prediction.

Table 2: Performance of general recommendation
and context-aware recommendation evaluated by
RMSE and MAE.

dataset method HIRSE MAE

Movielens-10M

MF 0.8946 0.7159
FM 0.8912 0.7128
HIR 0.8863 0.7092

HIR+ 0.8814 0.7054
HIR++ 0.8772 0.7025

Food dataset

MF 1.1552 0.9484
LR 1.1263 0.9136
TF 1.0635 0.8415
FM 1.0554 0.8453

CARS2 1.0201 0.8162
COT 1.0019 0.7921
HIR 0.9757 0.7816

HIR+ 0.9643 0.7723
HIR++ 0.9586 0.7684

5.3.2 Context-aware Recommendation
The bottom part of Table 2 shows the results of context-

aware recommendation measured by RMSE and MAE. HIR
outperforms the state-of-the-art context-aware methods. And
from the results, we can see that, comparing with COT,
the performance improvements of HIR, HIR+ and HIR++
are 2.7%, 3.8% and 4.4% respectively. The improvemen-
t involved by the first and second hidden layer are 1.1%
and 0.6% respectively, which proves that hidden layers can
improve the performance but yield a smaller improvement
than that of HIR itself. Moreover, we can observe that the
improvement of hidden layers decreases gradually with its
number, which means that the effort of hidden layers has its



Table 3: Performance of latent collaborative retrieval evaluated by recall, precision and F1-score.

dataset method
recall precision F1-score

MAP
@5 @10 @20 @5 @10 @20 @5 @10 @20

Delicious dataset

MF 0.1116 0.1552 0.1952 0.0915 0.0636 0.0401 0.1006 0.0902 0.0665 0.0919
LR 0.1397 0.1963 0.2576 0.1146 0.0804 0.0527 0.1259 0.1141 0.0875 0.1051
TF 0.1613 0.2246 0.2931 0.1323 0.0918 0.0601 0.1454 0.1303 0.0997 0.1144
FM 0.1638 0.2268 0.2965 0.1343 0.0927 0.0607 0.1476 0.1316 0.1008 0.1155
LCR 0.1654 0.2297 0.3013 0.1356 0.0939 0.0617 0.1491 0.1333 0.1024 0.1164
HIR 0.1792 0.2484 0.3274 0.1469 0.1017 0.0671 0.1615 0.1443 0.1114 0.1222
HIR+ 0.1856 0.2553 0.3282 0.1522 0.1046 0.0672 0.1672 0.1484 0.1116 0.1255
HIR++ 0.1867 0.2565 0.3314 0.1531 0.1049 0.0679 0.1682 0.1489 0.1127 0.1266

own limitation and we do not need to set too many hidden
layers.

5.3.3 Latent Collaborative Retrieval
Table 3 illustrates the results of latent collaborative re-

trieval measured by recall, precision, F1-score and MAP
on the Delicious dataset. Note that, all the methods are
implemented under the BPR framework. The results ob-
viously show that HIR greatly outperform the compared
methods. On recall@5, HIR, HIR+ and HIR++ improve
the performance of LCR by 8.5%, 12.1% and 12.7% respec-
tively. And on recall@10 and recall@20, the corresponding
improvements become 8.3%, 11.4%, 11.8% and 8.6%, 8.9%,
10.1%. Measured by precision and F1-score, the same im-
provements can be observed. Moreover, on global evaluation
metric MAP, our proposed HIR, HIR+ and HIR++ improve
the performance by 5.0%, 7.8% and 8.8% respectively. We
can draw similar conclusion that the performance improve-
ment of hidden layers decreases gradually with the number
of hidden layers in most experiments. The table also shows
that, compared with the results on @5 and @10, the second
hidden layer of HIR++ on @20 brings a greater improve-
ment, which means that when we generate more predicted
results, more hidden layers can be used to further improve
the performance.

5.3.4 Click-through Rate Prediction
The results of click-through rate prediction measured by

LogLoss are illustrated in Table 4. Note that, all the meth-
ods are implemented with the same objective function un-
der LogLoss. We can observe that, both latent factor based
methods, i.e., FM and HIR, outperform LR, which shows
that latent factor based methods can better discover under-
lying relation of different entities. Moreover, in both exper-
iments, without or with the position entity in the advertise-
ment impression, HIR achieves the best performance. Com-
pared with FM, HIR, HIR+ and HIR++ improve the per-
formance by 1.4%, 2.2%, 2.5% and 1.5%, 2.3%, 2.5% respec-
tively in these two experiments, which shows the promising
performance of HIR for multi-entity interaction prediction
with a number of entities.

5.4 Impact of Dimension
Performance of HIR and compared methods on the Food

dataset and the Delicious dataset with varying d is shown
in Figure 3. For simplicity, we do not illustrate performance
of MF and LR in the figure. Instead of that, we illustrate
the performance of several state-of-the-art methods and HIR
with 0, 1 and 2 hidden layers in our experiments.

Table 4: Performance of click-through rate predic-
tion evaluated by LogLoss.

dataset method
position

excluded included

Avazu dataset

LR 0.4186 0.4145
FM 0.4053 0.4025
HIR 0.3994 0.3962

HIR+ 0.3962 0.3934
HIR++ 0.3953 0.3921

As shown in Figure 3(a), for all the methods, with increas-
ing d, the value of RMSE decreases at first, then increases
after d = 5, which means that 5 is the best dimension for
all methods. We can also observe that HIR outperforms the
compared methods consistently with all dimensions. More-
over, as shown in Figure 3(b), d = 8 is the best parameter for
all ethods on the Delicious dataset. We can observe that the
impact of dimensionality for latent collaborative retrieval is
smaller than that for context-aware recommendation, and
HIR performs the best compared to other methods.

5.5 Impact of Interacting Order
In previous sections, we have illustrated the order user,

query, document of information retrieval and the order user,
context, item of context-aware recommendation. However,
for some applications, the orders are sometimes difficult to
be determined exactly. In such situations, it will cost lots of
labor to determine the proper order. Thus, to examine the
impact of interacting order of entities in HIR, we conduct
experiments with all possible orders for two tasks: context-
aware recommendation on the Food dataset and latent col-
laborative retrieval on the Delicious dataset. We implement
HIR with 0, 1 and 2 hidden layers in this experiment.

Table 5: Performance under different interacting or-
der on the Food dataset evaluated by RMSE of HIR.

order HIR HIR+ HIR++

(user,context,item) 0.9757 0.9643 0.9586
(item,context,user) 0.9763 0.9652 0.9583
(user,item,context) 0.9744 0.9633 0.9582
(context,user,item) 0.9786 0.9655 0.9596
(item,user,context) 0.9782 0.9663 0.9603
(context,item,user) 0.9798 0.9687 0.9594

variance 4.12E-06 3.45E-06 6.95E-07

The RMSE results of HIR under different interacting or-
ders on the Food dataset is shown in Table 5. The vari-



2 3 4 5 6 7 8 9 10
0.9

0.95

1

1.05

1.1

1.15

R
M

S
E

dimension

 

 

TF
FM
CARS2
COT
HIR
HIR+
HIR++

(a) Food dataset

2 4 6 8 10 12

0.105

0.11

0.115

0.12

0.125

M
A

P

dimension

 

 

TF
FM
LCR
HIR
HIR+
HIR++

(b) Delicious dataset

Figure 3: Performance of HIR and compared methods on the Food dataset and the Delicious dataset with
varying d.

Table 6: Performance under different interacting or-
der on the Delicious dataset evaluated by MAP.

order HIR HIR+ HIR++

(user,URL,tag) 0.1222 0.1255 0.1266
(tag,URL,user) 0.1243 0.1263 0.1275
(user,tag,URL) 0.1196 0.1234 0.1243
(URL,user,tag) 0.1217 0.1242 0.1262
(tag,user,URL) 0.1232 0.1251 0.1267
(URL,tag,user) 0.1206 0.1228 0.1231

variance 2.91E-06 1.75E-06 2.80E-06

ances of RMSE results are also shown in the table. Note
that, these results are all based on the same initialization.
With the same number of hidden layers, performances of
HIR are approximately the same with different interacting
orders. The small variances also show that the impact of
the interacting order for context-aware recommendation is
not significant. Similar conclusion that the impact of the
interacting order for latent collaborative retrieval is not sig-
nificant can also be drawn from Table 6. In a word, in these
applications, different interacting orders often achieve sim-
ilar performance. The unnecessary of the settled structure
can greatly reduce the labor for analyzing the raw data and
selecting a suitable order when there is no obvious one.

5.6 Visualization of Representation
Here, using the Delicious dataset as an example, we plan

to demonstrate the representations in HIR, and describe
some interesting observations. In Figure 4, we use principal
component analysis (PCA) to project the representations
into a two-dimensional space. The distance in this figure
reveals the relation of different representations.

We select three distinguishable users and name them as
Jack, Tom and Marry, as shown in Figure 4(a). The repre-
sentations of URL and tag are illustrated in Figure 4(b) and
Figure 4(c) respectively, in which we can observe that the
representations of similar URLs or tags are close. Figure
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Figure 4: Visualization of interaction representation
in the Delicious dataset.

4(d) shows the joint representations of user and URL. Al-
though Jack and Tom have different representations, they
have similar interaction representations when visiting pro-
gramming websites. Similarly, although Tom and Marry
have different representations, they have similar interaction
representations when visiting movie websites. Figure 4(e)
illustrates the interaction representations of user, URL and
tag. We can observe that positive samples and negative sam-
ples are clearly divided into two groups in the two-dimensional
space according to their interaction representations.

6. CONCLUSIONS AND FUTURE WORK
In this paper, for modeling collaborative multi-entity in-

teraction, a novel method, i.e., HIR, has been proposed. In
HIR, we generate the interaction representation of two en-



tities via tensor multiplication and this process is repeated
iteratively for the interaction of several entities. This pro-
cedure forms a hierarchical structure and can generate the
final joint representation. Then the prediction can be cal-
culated based on this representation using various learning
methods. The experimental results of four different applica-
tions show that HIR outperforms both general methods and
state-of-the-art task-specific methods.

In the future, we can further investigate the following di-
rections. First, in HIR, the dimensions of entities can be
adjusted for different datasets, which leads lots of hyper-
parameters to be determined. So, we need to find a method
to determine the dimensions automatically. Second, since
there are rich features in real-world applications, we plan to
incorporate the entities’ feature information in HIR.
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