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a b s t r a c t 

The sequential recommendation is one of the most fundamental tasks for Web applications. Recently, 

recurrent neural network (RNN) based methods become popular and show effectiveness in many se- 

quential recommendation tasks, such as next-basket recommendation and location prediction. The last 

hidden state of RNN is usually applied as the sequence’s representation to make recommendations. RNN 

can capture the long-term interest with the help of gated activations or regularizers but has difficulty in 

acquiring the short-term interest due to the ordered modeling. In this work, we aim to strengthen the 

short-term interest, because it is beneficial to generate responsive recommendation according to recent 

behaviors. Accordingly, we propose a Hierarchical Contextual Attention-based (HCA) network. First, RNN 

is extended to model several adjacent factors at each time step. Such kind of multiple factors can be con- 

sidered as a context where the short-term interest comes from. Then, within the context, the attention 

mechanism is used to find the important items that contribute to the short-term interest. This contextual 

attention-based technique is conducted on the input and hidden state of RNN respectively. In this way, 

we can relieve the limitation of ordered modeling of RNN, model the complicated correlations among 

recent factors, and strengthen the short-term interest. Experiments on two real-world datasets show that 

HCA can effectively generate the personalized ranking list and achieve considerable improvements. 

© 2019 Published by Elsevier B.V. 

1

 

t  

a  

o  

q  

c  

o  

p  

i

 

(  

c  

w  

f  

c  

t  

y

m  

t  

p  

T  

t  

t  

s  

t

 

g  

s  

[  

u  

b  

o  

c  

t  

t  

h

0

. Introduction 

Recently, with the development of the Internet, some sequen-

ial applications have become numerous and multilateral, such as

d click prediction, purchase recommendation, and web page rec-

mmendation. A user’s behaviors in such applications form a se-

uence in chronological order, and following behaviors of this user

an be predicted by sequential recommendation methods. Taking

nline shopping for instance, after a user buys an item, it is ex-

ected to recommend a list of items that the user might purchase

n the near future. 

Traditional sequential methods usually employ Markov chains

MC), while RNN based methods become dominant recently. We

an develop high/variable-order Markov models or combine MC

ith other methods like matrix factorization to improve the per-

ormance [1–3] . However, the Markov assumption makes it diffi-

ult to construct a more effective relationship among multiple fac-

ors. Lately, with the great success of deep learning, RNN based
∗ Corresponding author. 
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ethods have achieved better performances than MC on different

asks, e.g., next basket recommendation [4] , location prediction [5] ,

roduct recommendations [6] , and multi-behavioral prediction [7] .

hese RNN based methods mostly apply a common strategy: using

he last hidden state of RNN as the user’s final representation and

hen making recommendations. However, we conjecture that this

trategy is not adequate to represent users and few people pay at-

ention to this problem in the field of recommender systems. 

In other fields like machine learning, we can enhance RNN by

ated activations, regularizers, latent variables, and so on. The long

hort-term memory (LSTM) [8] and gated recurrent unit (GRU)

9] are two successful gated activations. They have been widely

sed in lots of fields and tasks. Many regularizers are proposed

ased on the Bernoulli stochastic process, which has a wide range

f applications, for example, in information science [10,11] . Re-

ently, dropout is successful for RNN and applies the null operator

o force some units to zero. There are many variations of dropout

o keep memory in RNN, like feed-forward dropout [12] , rnnDrop

13] , recurrent dropout [14] , and so on. Compared with dropout,

he newly developed zoneout randomly forces some units to keep

heir preceding values and becomes state-of-the-art [15] . Although

hese regularizers can resist the vanishing gradient to better
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capture the long-term dependency, they do not help to enhance

the user’s short-term interest. On the other hand, latent variables

are added to RNNs to improve performance. Usually, people would

combine latent variables with hidden states in RNN to encode ob-

served variability within the data, inform recurrent dynamics for

future states, and so on, like VRNN [16] , SRNN [17] , Z-Forcing [18] .

Most works incorporating latent variables would apply the future

information when processing the current hidden state at t -th step.

This is suitable for tasks like speech recognition. However, we can

not do this in sequential recommendation because we do not know

any future context after t -th step. 

RNN cannot well model the short-term interest for users, and it

may be not very appropriate to focus on better capturing the long-

term dependency in the sequential recommendation. RNN has one

item and one hidden state at each time step. Due to the recur-

rent structure and fixed transition matrices, RNN is well known

for the exponential increasing or decreasing and the current item

is usually more significant than the previous one. Therefore, be-

cause of this ordered modeling, RNN holds an assumption that

temporal dependency has a monotonic change with the input time

steps [7] . But the correlation among user behaviors is very com-

plicated. We cannot guarantee that one item is more significant

than the previous one. For example, we can consider the regular

three meals a day as a sequence. When we predict the breakfast

the next day by using RNN, the nearest dinner on this day is most

significant, followed by lunch. Intuitively, what is most relevant to

the next breakfast is previous breakfasts, instead of lunch or din-

ner. Small weights should be provided for such less relevant be-

haviors. On the other hand, people in machine learning would like

to enhance RNN by using gated activation functions or regularizers

to better capture the long-term dependency. This advantage allows

the hidden state to be able to connect previous information for a

long time. However, user interest would change over time. People

would forget what they have purchased or clicked after a period of

time. Therefore, there would be no need to force RNN to remember

the advanced inputs, and the successful methods to enhance RNN

in other fields may not be suitable in the recommender system.

Consequently, the short-term interest in RNN needs to be carefully

examined for the modeling of user behaviors. 

To strengthen the short-term interest, the key is to acquire the

complicated correlations among multiple factors. Therefore, rather

than processing the factor (item or hidden state) one by one, mul-

tiple factors are considered at each time step. Such several adja-

cent factors form a context in our work. This contextual model-

ing helps RNN to relieve the limitation of ordered modeling. In

some works, this contextual modeling is called union-level item

relevance model [19,20] , which can capture the collective influence

among multiple items. Furthermore, we propose to apply the at-

tention mechanism to acquire the complicated correlations. The at-

tention can effectively assign an appropriate weight for each factor

to tell its importance [21] . Then we apply this contextual attention-

based technique on the item to explore the correlations among

multiple items. Moreover, this technique is also employed on the

hidden state, and we acquire a hierarchical structure. 

In this paper, we propose a Hierarchical Contextual Attention-

based (HCA) network. It can considerably strengthen the short-

term interest. We employ the contextual attention-based technique

on the input and hidden state respectively. (1) The first level is

conducted on the input. We build a contextual input. A context

of several recent inputs is collected and each input is assigned

a weight by the attention mechanism. The contextual input is a

weighted sum of this context. We deliver both the contextual in-

put and the current input to the model. (2) The second level is

executed on the hidden state. We construct a contextual hidden

state based on a context of adjacent hidden states and attention.

We employ both the contextual hidden state and the current hid-
en state to establish the user’s overall interest. Finally, parameters

f HCA are learned by the Bayesian Personalized Ranking (BPR)

ramework [22] and the Back Propagation Through Time (BPTT) al-

orithm [23] . In summary, the main contributions are listed as fol-

ows: 

• We propose to model several factors at each time for RNN. The

short-term interest is mainly established by recent factors and

this contextual modeling can relieve the limitation of ordered

modeling of RNN. 

• We propose to apply the attention mechanism to summarize

the context. The attention can distinguish the importance of

each item in a context and find out which items are important

for the short-term interest. 

• Experiments on two large real-world datasets reveal that the

HCA network is very effective and outperforms the state-of-the-

art methods. Our model can automatically focus on critical in-

formation. 

. Related work 

We briefly review related works including sequential recom-

endation, capturing the long-term dependency, contextual mod-

ling, and attention mechanism. 

Recently, the recurrent neural network (RNN) based methods

ave become more powerful among sequential methods. Pooling-

ased representations of baskets are fed into RNN to make next

asket recommendation [4] . Combined with multiple external in-

ormation, RNN can predict a user’s next behavior more accurately

24] . Incorporated with geographical distance and time interval,

NN gains the state-of-the-art performance for location predic-

ion [5] . The RLBL model combines RNN and Log-BiLinear to make

ulti-behavioral prediction [7] . However, modeling user sequences

irectly using RNN is not adequate to fully acquire user expres-

ions. 

Many tasks prefer longer-term dependency, like speech recogni-

ion, language modeling, and so on. Considering that RNN can cap-

ure long-term dependency, in theory, gated activations like LSTM

nd GRU are devised and become popular. Recently, people de-

ign regularizers like dropout and zoneout which can help to keep

ore memory in RNN and further improve performance. In the

eginning, people only employ dropout to the feed-forward con-

ection in RNN [12] . Later, people take other ways. Moon et al.

13] propose a new dropout called rnnDrop for RNN. They apply

ropout to recurrent connections and mainly focus on memory

ells. Semeniuta et al. [14] propose recurrent dropout and apply

t to the input and update gates in LSTM/GRU. Most recently, in-

tead of forcing some units to zero in the dropout, Krueger et al.

15] design a novel regularizer called zoneout. By exactly keeping

revious values, zoneout is more appropriate to preserve informa-

ion than dropout for RNN and becomes state-of-the-art. However,

oth gated activations and regularizers focus on better capturing

he long-term dependency, short-term dependency of RNN has not

een fully studied yet. 

Contextual modeling has been proven to be very important

n different fields and tasks. When learning word vectors in

ord2vec, the prediction of a word is based on a context of re-

ent words appearing before or after [25,26] . On scene labeling of

omputer vision, the patch is widely used. Episodic CAMN model

akes contextualized representation for every referenced patch by

sing surrounding patches [27] . As the winner of the ImageNet ob-

ect detection challenge of 2016, GBD-Net employs different resolu-

ions and contextual regions to help identify objects [28] . Our con-

extual modeling mainly focuses on adjacent factors (e.g., recent

nputs or hidden states) without target sequences, and do not use
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Table 1 

Notation. 

Notation Explanation 

U, I, I u Set of users, set of items, sequence of items of user u 

x p , x q Positive item, negative item 

ˆ x t upq Difference of preference of user u towards x p and x q at the t th time 

d Dimension of the input item 

x p , h Input item and hidden state of GRU 

x c , h c Contextual input, contextual hidden state 

w x , w h Window widths 

U , W , b Transition matrices and bias of GRU 

V Transition matrix for x c 
E , F Embedding matrices for h and h c 
h o Overall interest of h and h c 
r x / Q x , a x Weight vector/matrix and attention weight for input item 

r h / Q h , a h Weight vector/matrix and attention weight for hidden state 

c

z

r

h

h

w  

d  

d  
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ny external information (e.g., time, location) which is also called

ontextual information [24,29–31] . 

Massive works benefit from the attention mechanism in re-

ent years. Inspired by human perception, the attention mech-

nism enables models to concentrate on critical parts and con-

truct a weighted sum. The mean-pooling and max-pooling, on the

ther hand, are unable to allocate appropriate credit assignment

or individuals [21] . This mechanism is first introduced in image

lassification to directly explore the space around the handwrit-

en digits by using visual attention [32] . Besides using contextual

odeling, Episodic CAMN applies the attention mechanism to

daptively choose important patches [27] . In NLP related tasks, the

ttention mechanism is first introduced to Neural Machine Trans-

ation (NMT) [33] . This work jointly learns to align and translate

ords and conjectures the fixed-length vector (e.g., the last hidden

tate of the source language) is a bottleneck for the basic encoder-

ecoder structure [9] . 

Recently, there are some studies using both the context and the

ttention in the recommender system, where the context refers to

he recent factor but not the external information. Some works are

imilar to ours, but in reality, they are considerably different and

o not apply to our task. The study [34] is a regression model to

redict target values. Its attention on the input is also to com-

ine multiple elements but they are at the same time. However,

odeling the short-term interest needs recent items that belong

o different times. The attention on the hidden state is to build the

elations between a target value and several hidden states. Unfor-

unately, the sequential recommendation in our work only has one

nput sequence for each user without the target sequence. At the

ame time, there are some studies that are indeed related to our

etwork and MARank model [20] is the most related one. MARank

aptures long-term preference based on BPR framework and de-

ises a multi-order attentive ranking model to represent short-

erm preference. In detail, MARank embeds a set of items each

ime and maps items’ features by the residual network. By us-

ng the attention mechanism, MARank constructs the individual-

evel interactions. Furthermore, MARank applies another residual

etwork to obtain union-level interaction. This work becomes the

tate-of-the-art for the sequential recommendation. 

. Proposed HCA network 

In this section, we propose a novel network called Hierarchi-

al Contextual Attention-based (HCA). We first formulate the prob-

em and introduce the basic model of GRU. Then we present the

ontextual attention-based technique on the input and the hid-

en state respectively. Finally, we train the network with the BPR

ramework and the BPTT algorithm. 

.1. Problem formulation 

In order to simplify the problem formulation of sequential rec-

mmendation, we take buying histories of online shopping as an

xample. Use U = { u 1 , . . . , u |U| } and I = { i 1 , . . . , i |I| } to represent

he sets of users and items respectively. Let I u = (i u 
1 
, . . . , i u |I u | ) de-

ote the items that the user u has purchased in the time order.

iven each user’s history I u , our goal is to recommend a list of

tems that a user may buy in the near future. The notation is listed

n Table 1 for clarity. 

.2. Gated recurrent unit 

GRU is very effective to deal with the gradient vanishing and

xploding problem. It has an update gate z t and a reset gate r t to
ontrol the flow of information. The formulas are 

 

t = σ
(
U 1 x 

t 
p + W 1 h 

t−1 + b 1 

)

 

t = σ
(
U 2 x 

t 
p + W 2 h 

t−1 + b 2 

)

˜ 
 

t = tanh 

(
U 3 x 

t 
p + W 3 

(
r t � h 

t−1 
)

+ b 3 

)

 

t = 

(
1 − z t 

)
� h 

t−1 + z t � ˜ h 

t 

(1) 

here x t p ∈ R 

d is the input vector and t is the time step, d is the

imension, and � is the element-wise product. The subscript p in-

icates an item is from the user sequence. ˜ h 

t 
is the candidate state

ctivated by tanh ( x ). The output h 

t is the current hidden state. The

ast hidden state h 

n is usually regarded as the sequence’s represen-

ation, where n is the length of the sequence. 

.3. HCA 

.3.1. Contextual attention-based modeling on the input 

The first level of HCA is on the input and the modeling process

s represented in the bottom part of Fig. 1 . At each time step, we

ollect a context of several recent items and build a contextual in-

ut x c to explore the complicated correlations. Going along with

he current original input x p , x c is also delivered to the GRU unit

o enhance the representation ability of the hidden state. 

Take the current t th time step for instance. Let C t x be a con-

ext matrix consisting of recent w x inputs, where w x is the window

idth of the context. Then the following attention mechanism will

enerate a vector a x consisting of w x weights and form a weighted

um x t c . The important information in C t x will be automatically re-

erved. 

 

t 
x = 

[
x t−w x +1 

p ; · · ·; x t p 
]

C t x ∈ R 

w x ×d (2) 

 x = r T x tanh 

(
Q x ( C 

t 
x ) 

T 
)

e x ∈ R 

w x (3) 

 x = softmax ( e x ) a x ∈ R 

w x (4) 

 

t 
c = 

(
a x C 

t 
x 

)T 
x t c ∈ R 

d (5) 

here r x ∈ R 

d and Q x ∈ R 

d×d are the weight vector and matrix for

ttention. C t x is updated iteratively through the recurrent structure

f GRU. The beginning of a sequence does not contain enough in-

uts and thus we apply zero vectors to make up this context ma-

rix. The subscript x represents variables which are associated with

he input. x t c is the contextual attention-based input. 

Next, we add x t c to the basic GRU in Eq. (1) to rewrite the for-

ula as 

 

t = σ
(
U 1 x 

t 
p + V 1 x 

t 
c + W 1 h 

t−1 + b 1 

)

 

t = σ
(
U 2 x 

t 
p + V 2 x 

t 
c + W 2 h 

t−1 + b 2 

)

˜ 
 

t = tanh 

(
U 3 x 

t 
p + V 3 x 

t 
c + W 3 

(
r t � h 

t−1 
)

+ b 3 

)

 

t = 

(
1 − z t 

)
� h 

t−1 + z t � ˜ h 

t 

(6) 
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Fig. 1. Diagram of the HCA network. The contextual attention-based modeling is conducted on the input and hidden state respectively. Context of several recent inputs 

( x t−w x +1 
p , . . . , x t−1 

p , x t p ) is used to explore the correlation among items. Context of several recent hidden states ( h 
t−w h +1 

, . . . , h 
t−1 

, h 
t 
) is used to strengthen the short-term 

interest and construct the user’s overall interest. We only illustrate the whole modeling process at the t th time step in detail and select the same window widths. 
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where V ∈ R 

3 ×d×d formed by V 1 , V 2 , V 3 is the transition matrix for

x t c . In this way, h 

t contains not only information of original input

x t but also critical information of several recent inputs represented

by x t c . The representation ability of each hidden state is greatly en-

hanced. 

In Eq. (6) , we still need to feed x t p into the GRU unit in order to

guarantee the modeling of original long-term interest in h 

t . How-

ever, as x t p and x t c are both in the Eq. (6) , the consequence is that

x t p still has the highest weight among the recent input items. This

is a flaw in the acquired complicated correlations among items.

Hence we execute further contextual attention-based modeling on

the hidden state. 

3.3.2. Contextual attention-based modeling on hidden state 

The second level of HCA is on the hidden state and we illustrate

the modeling process in the upper part of Fig. 1 . At each time step,

a context of several recent hidden states is collected and a contex-

tual hidden state h c is constructed to capture the critical short-

term interest. Then we combine the h c and the current h to obtain

the user’s overall interest h o . 

The construction of contextual attention-based hidden state h 

t 
c 

is similar to that of x t c : 

 

t 
h = 

[
h 

t−w h +1 ; . . . ; h 

t 
]

C t h ∈ R 

w h ×d (7)

e h = r T h tanh 

(
Q h ( C 

t 
h ) 

T 
)

e h ∈ R 

w h (8)

a h = softmax ( e h ) a h ∈ R 

w h (9)

h 

t 
c = 

(
a h C 

t 
h 

)T 
h 

t 
c ∈ R 

d (10)

where C t h is the context matrix of recent w h hidden states. The

operations on C t h are the same with that on C t x . Variables associated

with the hidden state have a subscript h. h 

t 
c holds the strengthened

short-term interest in recent w h time steps. 

The final representation is a non-linear combination of h 

t 
c and

h 

t . This is inspired by some works in NLP tasks, like recogniz-

ing textual entailment [35] and aspect-level sentiment classifica-

tion [36] . 

h 

t 
o = tanh 

(
E h 

t + F h 

t 
c 

)
h 

t 
o ∈ R 

d (11)
here E ∈ R 

d×d and F ∈ R 

d×d are embedding matrices. h 

t 
o is the

ser’s current overall interest. 

.3.3. Network learning 

The proposed network can be trained under the BPR framework

nd by using the classical BPTT algorithm. BPR is a powerful pair-

ise method for implicit feedback. Many RNN based methods have

uccessfully applied BPR to train their models [4,5,7] . 

The training set S is formed by ( u, p, q ) triples: 

 = { (u, p, q ) | u ∈ U ∧ x p ∈ I u ∧ x q ∈ I \ I u } (12)

here u denotes the user. Used as subscripts, p or q indicates the

tem x is positive or negative. Item x p is from the user’s history

 

u , while item x q is randomly chosen from the rest items. Then

e calculate the user’s difference of preferences for positive and

egative items at each time step.k 

ˆ 
 

t 
upq = 

(
h 

t 
o 

)T (
x t+1 

p − x t+1 
q 

)
(13)

here x t+1 
p and x t+1 

q represent next positive and negative items re-

pectively. 

The objective function minimizes the following formula: 

∗ = argmin 

�

∑ 

(u,p,q ) ∈S 
− ln σ

(
ˆ x upq 

)
+ 

λ�

2 

‖ �‖ 

2 (14)

here � = { X , U , W , V , b , r x , Q x , r h , Q h , E , F } is the set of param-

ters, and σ (x ) = 1 / (1 + e −x ) is the logistic function. X is latent

eatures of all items. U is a matrix formed by U 1 , U 2 , U 3 used in

qs. (1) and ( 6 ), which is similar to W , V , b . λ� � 0 is the regu-

arization parameter. Then, HCA-GRU is learned by stochastic gra-

ient descent and BPTT. During the test process, we need to re-

alculate each user’s final overall interest h 

n 
o by using the fixed

arameter �. 

. Experimental results and analysis 

In this section, we conduct experiments on two real-world

atasets. First, we introduce the used datasets, evaluation metrics,

nd several baselines. Then we make a comparison between HCA

nd baselines. Finally, we present the window width selection and

ttention visualization. 
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Table 2 

Datasets. We list the numbers of users, items, feedbacks, average sequence length, average number of an 

item and sparsity of both datasets. 

Dataset #users #items #feedbacks Avg. seq. len. Avg. num. of an item Sparsity 

Taobao 36,986 267,948 1,640,433 44.35 6.12 99.9834% 

Outbrain 65,573 69,210 833,646 12.71 12.05 99.9816% 
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.1. Experimental settings 

.1.1. Datasets 

Experiments are carried out on two datasets collected from

aobao 1 and Outbrain 2 . We choose users by the length and do not

elete items that appear less frequently. 

• Taobao is a dataset for clothing matching competition on the

TianChi 3 platform. User historical behavior data is applied to

make the sequential recommendation. We hold users who pur-

chase at least 30 times ( |I u | � 30). 

• Outbrain is a dataset for click prediction on Kaggle. We apply

the page views log here. As the log is too tremendous and over

2 billion rows, we choose a sample version and convert it to the

user sequence. Finally, we keep users who have no less than 10

views ( |I u | � 10). 

The basic statistics of two datasets are listed in Table 2 . Both

atasets have massive sequential implicit feedbacks. Taobao has far

ore items than Outbrain, which naturally creates a huge search

pace and may degrade performance. 

.1.2. Evaluation metrics 

Performance is evaluated on the test set under metrics consist-

ng of Recall and Normalized Discounted Cumulative Gain (NDCG)

37] . The former one is an evaluation of unranked retrieval sets

hile the latter one is an evaluation of ranked retrieval results.

ere we consider Top- k (e.g., k = 5, 10 and 15) recommendation.

he top-bias property of NDCG is considerable for recommendation

38] . We select the first 80% of each user sequence as the training

et and the rest 20% as the test set. 

.1.3. Comparison 

We compare HCA with several comparative methods: 

• Random : Items are randomly recommended for all users. 

• POP : This method recommends the most popular items in the

training set to users. 

• BPR : This method refers to the BPR-MF for implicit feedback

[22] . This BPR framework is state-of-the-art among pairwise

methods. 

• GRU : RNN is the state-of-the-art sequential baseline for recom-

mendation [4] . We apply an extension of RNN called GRU as

it can capture the long-term interest. Compared with our pro-

posed method, GRU models sequences without any contextual

attention-based modeling. 

• Zoneout : Zoneout is state-of-the-art for regularizing RNN by

stochastically preserving previous hidden activations [15] . We

implement this method based on GRU and execute zoneout on

the hidden states. 

• MARank : MARank is the state-of-the-art for sequential recom-

mendation [20] . It balances the long-term and short-term pref-

erences by unifying individual-level and union-level item inter-

actions. 
1 https://tianchi.shuju.aliyun.com/datalab/dataSet.htm?id=13 . 
2 https://www.kaggle.com/c/outbrain-click-prediction . 
3 https://tianchi.aliyun.com/ . 

G  

i  
Our HCA has 3 networks which are abbreviated as HCA(x w x ,

 w h ), HCA(x w x ) and HCA(h w h ), where w x and w h are values of

indow widths. The first one is the complete network. The rest

wo are subnetworks where we only conduct contextual attention-

ased modeling on the input or hidden state. Besides, the param-

ter � is initialized by a uniform distribution [ −0 . 5 , 0 . 5] . The di-

ension is set as d = 20 . The learning rate is set as α = 0 . 01 and

he epochs are 100. Regularization parameter is set as λ� = 0 . 001 .

s for zoneout, it applies random identity-mask to keep previous

idden states. The corresponding best zoneout probabilities are set

s z h = (0 . 5 , 0 . 1) on two datasets respectively. The code is written

y using Theano and is available on GitHub 4 . 

.2. Analysis of experimental results 

Table 3 illustrates the performances of all compared methods

n two datasets. We list the performance of the HCA network un-

er best window widths which will be discussed in the next sec-

ion. Please note that all values in Tables 3, 5 and Fig. 2 are repre-

ented in percentage, and the ‘%’ symbol is omitted in these tables

nd figures. All methods have run four times and we use average

alues as the results. 

Performance of Our HCA. From a global perspective, our HCA is

ery effective and outperforms the baselines. Within HCA, the sub-

etwork performances of HCA(x w x ) and HCA(h w h ) are very close,

nd the latter is slightly better than the former. The complete

CA(x w x , h w h ) obtains the best performance. In terms of the 2

etrics, HCA performs differently. It has a great improvement on

ecall@5, but the improvement visibly gets smaller on Recall@10.

n contrast, the improvement on NDCG is very considerable and

uite stable. The complete HCA is about 50% more efficient than

he GRU on NDCG. HCA has a very prominent performance in sort-

ng. This is because HCA can effectively capture the complicated

orrelations among recent items and distinguish which items the

ser are more interested in. When we compare the performance

f the two datasets, we find HCA dose very well. Although the ab-

olute values of two datasets vary greatly, HCA obtains similar rel-

tive improvements. 

Comparison with different methods. In this part, we compare the

ifferences between these methods. BPR is a widely used static

ethod. As it can not model the dynamics in user sequences (e.g.,

hanges of user interest), it is obviously less effective than GRU.

s for zoneout, it is more effective than GRU on Taobao, while

t is competitive with GRU or is worse than that on Outbrain.

he reason is that blindly enhancing the long-term dependency

s not a perfect fit for the modeling of user sequences, because

ser interest would change over time. On Taobao, people purchase

ommodities and user interest usually changes slowly. In such a

ituation, zoneout can improve performance by capturing longer-

erm dependency than GRU. However, Outbrain is collected from

sers’ page views log, and the average sequence length of Out-

rain is much shorter than that of Taobao. We can think that

RU is enough to capture long-term dependency. Besides, user

nterest can change sharply when clicking web pages. Zoneout’s
4 https://github.com/cuiqiang1990/HCA . 

https://tianchi.shuju.aliyun.com/datalab/dataSet.htm?id=13
https://www.kaggle.com/c/outbrain-click-prediction
https://tianchi.aliyun.com/
https://github.com/cuiqiang1990/HCA
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Table 3 

Evaluation of different methods on two datasets. We generate Top-5/10/15 items for each user. Val- 

ues are represented in percentage, and so do the other tables and figures. 

Dataset Method 

@5 @10 @15 

Recall NDCG Recall NDCG Recall NDCG 

Taobao Random 0.002 0.003 0.003 0.003 0.004 0.003 

POP 0.025 0.046 0.100 0.085 0.138 0.104 

BPR 0.373 0.860 0.560 0.872 0.723 0.925 

GRU 0.478 1.088 0.810 1.099 1.123 1.178 

Zoneout ( z h = 0.5) 0.596 1.222 0.946 1.281 1.244 1.403 

MARank 0.814 1.810 1.101 1.754 1.305 1.840 

HCA(x3) 0.724 1.548 1.149 1.610 1.480 1.739 

HCA(h5) 0.735 1.569 1.145 1.600 1.472 1.727 

HCA(x5,h5) 0.765 1.618 1.191 1.659 1.520 1.787 

Outbrain Random 0.007 0.006 0.015 0.009 0.022 0.012 

POP 0.026 0.019 1.188 0.535 1.191 0.536 

BPR 4.092 4.050 8.523 5.992 23.750 10.935 

GRU 11.145 9.451 17.560 11.987 21.413 12.969 

Zoneout ( z h = 0.1) 11.052 8.192 18.384 11.351 20.900 12.050 

MARank 10.571 7.807 16.428 9.445 24.918 12.351 

HCA(x2) 13.485 13.237 19.033 15.551 21.744 16.498 

HCA(h3) 14.562 12.988 19.993 15.353 24.010 16.522 

HCA(x2,h3) 16.396 14.225 23.328 17.097 26.836 18.280 

Fig. 2. The election of different window widths for two subnetworks on two datasets. We generate Top-5,10 and 15 items. Subnetworks are HCA(x2 ∼ 5) and HCA(h2 ∼ 5), 

and we omit the ‘HCA()’ for conciseness in the figures. 
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better modeling of long-term dependency is harmful to the mod-

eling of user’s current interest in such case. Different from other

tasks like speech recognition, under the condition of ensuring

long-term dependency by using GRU/LSTM, it is more advan-

tageous to enhance RNN to do sequential recommendation by

strengthening the modeling of user’s short-term interest. 

Comparison with MARank. Obviously, MARank is a strong base-

line. On Taobao, MARank performs best on Top-5 and is compa-

rable with our HCA on Top-10/15. While on Outbrain, although

MARank considerably outperforms the BPR, it is evidently not as

good as our model. Briefly, MARank and our HCA are based on BPR

and GRU, respectively. Both models can greatly strengthen short-

term interest. On the one hand, MARank captures multi-order item

interactions by using the residual network and the attention, which
elps to relieve the data sparsity. The average numbers of an item

re 6.12 and 12.05 on Taobao and Outbrain, respectively. MARank

ends to have better performance on the sparser Taobao dataset.

n the other hand, as mentioned in the previous paragraph, user

nterest changes slowly on Taobao while it would have a sharp

hange on Outbrain. The sequential effect is less significant on

aobao. Therefore, BPR and GRU perform close to each other on

aobao while GRU is obviously better than BPR on Outbrain. How-

ver, MARank is based on BPR to capture long-term interest, which

eads to defects in capturing sequential patterns. The two reasons

ause a difference in the performance of MARank on two datasets.

ccordingly, our HCA has the advantage to better capture the se-

uential pattern than MARank. 
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Table 4 

Training time of each model in each iteration on two datasets. Statistics 

are expressed in seconds and the batch size is one. 

Dataset 

(a) (b) (c) (d) (e) 

d vs. e BPR GRU Zoneout MARank HCA 

Taobao 90 188 192 3682 362 1017% 

Outbrain 45 128 132 967 194 498% 
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In this paragraph, we illustrate another advantage of the speed

f our HCA by analyzing the computational complexity between

CA and MARank. We obtain the training time of each iteration on

wo datasets and the statistics are in Table 4 . The training time of

ARank is ten times and five times as long as our HCA on Taobao

nd Outbrain, respectively. Actually, MARank has much more op-

rations than our HCA each time when modeling a user sequence.

ARank has an individual-level interaction with two k -layer resid-

al networks for the current user vector and several items’ vectors.

his process has 2 k recurrent activations and k +2 attentions. Fur-

hermore, the union-level interaction in MARank also has a k -layer

esidual network, which results in k activations. In total, MARank

as 3 k activations and k +2 attentions. In our HCA, it has 1 atten-

ion on items, 1 attention on hidden states, 3 activations in a GRU

nit ( Eq. (6) ) and 1 activation in computing the final user vector

 Eq. (11) ). Our HCA has a total of 4 activations and 2 attentions.

herefore, compared with MARank, although our HCA is not always

est, it is evidently faster and more efficient than MARank. 

In conclusion, our HCA performs best for the whole, enhances

NN significantly, has a fast speed, and can better model user be-

aviors in different scenarios. 

.3. Analysis of window width 

In this subsection, we explore how many factors modeled each

ime are most conducive to the modeling of short-term interest

ecause the short-term interest mainly comes from recent behav-

ors. In another word, we investigate the best window width for

CA. Both window widths w x and w h range in [2, 3, 4, 5]. The ba-

ic GRU can be considered as a special case of our network when

oth w x and w h are 1. 

.3.1. Subnetwork: HCA ( xw x ), HCA ( hw h ) 

First we select the best window widths for two subnetworks

n two datasets. Fig. 2 illustrates the performance of 2 metrics.

or two subnetworks with different window widths, the difference

s slight on Recall, while there is an obvious difference on NDCG.

onsequently, the best window widths for two subnetworks are
Table 5 

Evaluation of different window widths for the com

Dataset Method 

@5 

Recall NDCG 

Taobao HCA(x3,h2) 0.693 1.472 

HCA(x3,h3) 0.675 1.476 

HCA(x3,h4) 0.678 1.472 

HCA(h5,x2) 0.715 1.526 

HCA(h5,x3) 0.735 1.556 

HCA(h5,x4) 0.735 1.567 

HCA(h5,x5) 0.765 1.618 

Outbrain HCA(x2,h2) 13.515 12.902

HCA(x2,h3) 16.396 14.225

HCA(x2,h4) 16.698 14.306

HCA(x2,h5) 14.799 11.886

HCA(h3,x3) 13.183 10.883

HCA(h3,x4) 12.482 9.733 

HCA(h3,x5) 12.368 10.869
hosen as w x = 3 , w h = 5 on Taobao and w x = 2 , w h = 3 on Out-

rain, respectively, according to NDCG. Both w x and w h on Taobao

re larger than those on Outbrain. This is caused by differences in

ser behaviors. Taobao consists of purchase history while Outbrain

ontains page views log. If a user buys clothes online, his short-

erm interest changes slowly. However, user’s short-term interest

ften has a quick or even sharp change when he views web pages.

herefore, items with complicated correlations tend to appear in

mall windows in Outbrain. 

.3.2. Complete network: HCA ( xw x , hw h ) 

Based on the best window widths of the two subnetworks, we

ick proper w x , w h for the complete HCA network. Grid search over

ombinations of w x ∈ [2, 3, 4, 5] and w h ∈ [2, 3, 4, 5] is very time-

onsuming. Instead, we fix one with its best value and adjust the

ther. Results are shown in Table 5 . Combinations w x = 5 , w h = 5

nd w x = 2 , w h = 3 are best for Taobao and Outbrain respectively.

he combination of the best window widths of the subnetworks

an generate good results but it does not guarantee the best. We

an also see that the hierarchical structure can leverage the advan-

ages of the two subnetworks and further achieve better perfor-

ance. 

.4. Analysis of attention weights 

After we acquire the best window widths, we discuss which

actors in a context contribute to the short-term interest. The at-

ention mechanism generates a vector to summarize contextual

nformation, and the attention weights can be obtained in Eqs.

4) and ( 9 ). We take the best networks HCA(x5,h5) on Taobao

nd HCA(x2,h3) on Outbrain for instance. We choose one sequence

rom each of the two datasets. Weights of the two sequences at

he last time step are listed in Table 6 . 

On one hand, we focus on weights of inputs. We look at each

ine of weights. For example, in the third line on Taobao, the

eight of item x n −6 is 0.396 but x n −3 only gets 0.013. This gap

s about 30 times. Obviously, attention can capture the most im-

ortant item with the highest weight. We check each column. If

n item is very important in a context, it would be probably also

ery important in the next context as it has critical information,

nd vice versa. For example, items x n −6 and x n −2 on Taobao have

bout 0.3, but the weights of x n −3 are all less than 0.03. On the

ther hand, we study weights of hidden states. The weights have

ittle difference with each other on Taobao and hold a descend-

ng order on Outbrain respectively. This is because each hidden

tate has its own important information for the modeling of short-

erm interest. To sum up, our HCA relieves the limitation of the
plete HCA network on two datasets. 

@10 @15 

Recall NDCG Recall NDCG 

1.084 1.521 1.392 1.639 

1.054 1.517 1.372 1.646 

1.051 1.515 1.382 1.644 

1.113 1.570 1.453 1.701 

1.170 1.613 1.533 1.753 

1.141 1.604 1.482 1.740 

1.191 1.659 1.520 1.787 

 20.706 15.800 24.194 17.173 

 23.328 17.097 26.836 18.280 

 21.721 16.747 25.893 18.106 

 22.144 14.992 26.750 16.519 

 20.448 14.070 25.481 15.501 

21.996 13.512 25.712 14.974 

 20.264 14.161 25.073 15.946 
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Table 6 

Examples of attention weights of two users’ sequences on two datasets, respectively. We apply the best HCA(x5,h5) 

on Taobao and HCA(x2,h3) on Outbrain. The HCA(x2,h3) is taken as an example to explain how weights are or- 

ganized. Its window widths are w x = 2 , w h = 3 . The context of the last hidden state ( h n ) has 3 hidden states 

( h n −2 , h n −1 , h n ). Every one of these three hidden state has 2 weights of the input. For example, the correspond- 

ing context of input for h n is x n −1 and x n . 

(a) Taobao - HCA(x5,h5) 

Hidden states h n −8 h n −6 h n −6 h n −5 h n −4 h n −3 h n −2 h n −1 h n 

Weights 0.207 0.187 0.203 0.199 0.204 

Inputs x n −8 x n −7 x n −6 x n −5 x n −4 x n −3 x n −2 x n −1 x n 

Weights 0.170 0.271 0.289 0.144 0.126 

0.323 0.345 0.171 0.150 0.011 

0.396 0.196 0.172 0.013 0.223 

0.252 0.220 0.016 0.287 0.225 

0.290 0.021 0.378 0.296 0.015 

(b) Outbrain - HCA(x2,h3) 

Hidden states h n −3 h n −2 h n −1 h n 

Weights 0.366 0.327 0.307 

Inputs x n −3 x n −2 x n −1 x n 

Weights 0.661 0.339 

0.597 0.403 

0.319 0.681 
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ordered modeling of RNN by modeling several factors (item, hid-

den state) each time. The attention mechanism can capture the

most important information and assign time-independent non-

monotonic weights. 

5. Conclusion 

In this work, we have proposed a novel network called Hierar-

chical Contextual Attention-based (HCA) network for the sequential

recommendation. As GRU can capture the long-term interest, we

focus on strengthening the short-term interest. We propose a con-

textual attention-based technique and apply it to the input and the

hidden state, respectively. A contextual input is built to capture the

correlation among adjacent items and enhance the representation

ability of each hidden state. Then we construct a contextual hid-

den state to extract the short-term interest within adjacent hidden

states. The contextual and current hidden states are combined to-

gether as the user’s overall interest. Experiments have verified the

state-of-the-art performance of our proposed network, especially

in terms of NDCG. The results also demonstrate that the contextual

attention-based technique can effectively relieve the limitation of

ordered modeling as well as capture the critical information, and

the hierarchical structure can fully leverage the advantage of dif-

ferent factors. 

In the future, we would like to apply the proposed model to

other scenarios, like next-basket recommendation, music recom-

mendation, and so on. For the model itself, we would like to fur-

ther enhance RNN by explicitly modeling user’s long-term interest.

At each time step, instead of using long-term interest acquired in

the current hidden state, we would apply the attention mechanism

to all the hidden states up to now to form the long-term inter-

est. After that, we can achieve a better balance between short-term

and long-term interest. 
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