
Towards Accurate and Interpretable Sequential Prediction:
A CNN & Attention-Based Feature Extractor

Jingyi Wang∗

University of Electronic Science and Technology of
China

Chengdu, China
jingyi.wang@std.uestc.edu.cn

Qiang Liu
RealAI and Tsinghua University

Beijing, China
qiang.liu@realai.ai

Zhaocheng Liu
RealAI

Beijing, China
zhaocheng.liu@realai.ai

Shu Wu†

Institute of Automation and
Artificial Intelligence Research
Chinese Academy of Sciences

Beijing, China
shu.wu@nlpr.ia.ac.cn

ABSTRACT

With the influence of information explosion, there are more
and more choices exposed to public view. Next item rec-
ommendation is being a significant and challenging task.
Recently, attention mechanism, Convolutional Neural Net-
works (CNN) and other kinds of deep components are used
to model user behaviors. However, the proposed models of-
ten fail to extract the feature of user behaviors in different
time periods and the CNN-based models before are hard to
make the used CNN interpretable. In this paper, we propose
a CNN & Attention-based Sequential Feature Extractor
(CASFE) module to capture the possible features of user
behaviors at different time intervals. Specifically, we import
CNN to extract multi-level features of user behaviors with
different time periods. After each CNN layer, we use atten-
tion module to emphasize the different effect of behaviors
on the prediction result. Besides, the features we try to ex-
tract here have the similar concept and meaning with the
hand-crafted features in Feature Engineering, which proves
the validity of CASFE. Accordingly, CASFE becomes a gen-
eral sequential feature extractor that can be used in various
sequential prediction tasks. With Multi-Layer Perceptron
(MLP), CASFE would be a state-of-the-art next item rec-
ommendation model. The model obtains good performance
on Last.fm 1K dataset and MovieLens 1M dataset. Besides,
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as a compatible extractor module, it can also promote C-
TR prediction models as well as other sequential prediction
tasks.
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1 INTRODUCTION

With the influence of information explosion, more and more
choices are presented to the public. Accurate recommenda-
tion items would lead to higher user stickiness in general. So
service platforms like music or shopping websites need effec-
tive sequential features of user behaviors to improve service
quality. Accordingly, extracting sequential feature is a nec-
essary and significant stage when modeling user behaviors.
To conclude user features for sequential prediction, models
try using collaborative filtering [18] or some deep learning
modules. An example of applying these extracted features
is next item recommendation, which is an important task
in real-world recommender systems [28]. In this task, da-
ta is processed into sequences of historical items that users
clicked or bought chronologically. The next time when a us-
er logs in, some personalized items would be presented to
him according to the features generated by recommendation
algorithms on browsing history. In a word, the main task
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of feature extracting here is to extract pivotal user features
from sequential data. Based on the extracted features, sys-
tems can yield more accurate recommendation to users.

For extracting users’ sequential features to achieve person-
alized recommendation, many recommendation algorithms
import deep learning modules. There are many related mod-
els based on RNN [4, 7, 9, 14]. But their speed is usually s-
lower than other models obviously. Attention mechanism and
CNN are the two most commonly used modules due to their
good performance. The importance of attention mechanism
is illustrated in STAMP [17] and other related models. CNN
is popular recently for its good performance on computer vi-
sion [8] and some other tasks [2, 21]. Caser [23] is a successful
example of using CNN in the sequential recommender, which
achieves a comparable result better than the previous RN-
N models. NextItNet [24] is introduced with dilated CNN
and residual learning. But they are hard to give a reason-
able interpretation of the information and features got from
CNN so they are usually considered as black boxes. Besides,
they need additional residual block [6] if a multi-layer CNN
is used. Otherwise, the learning would be hard to continue
because of gradient issues.

As we can see, few models could capture the possible se-
quential features during time periods with different fixed
lengths. For example, if a person is used to watching a ro-
mantic movie every weekend but prefers comedy movies at
other times, there is a great possibility that the proposed
models would recommend a comedy. To solve this problem,
this paper performs an appropriate combination of CNN and
attention module as the main part of CASFE. With a multi-
layer CNN, we not only expand the receptive field on se-
quential behaviors but also try to explore the possible peri-
odicity of user behavior. Periodicity here means the possible
features with time periods of some fixed lengths. For exam-
ple, a user might be used to watching an inspiring movie
once a week and might prefer a romantic movie every month
with his/her partner. Afterward, we add attention module
after each convolution layer to emphasize the different im-
portance of sequential actions. In this way, CASFE focuses
on important actions and reduces the focus on unimportant
actions. Then we concat outputs of all attention layers and
import MLP to get the final prediction scores of all alter-
native items. Accordingly, we can alleviate information loss
and possible gradient problems because the results of all C-
NN layers are connected to the final result. So we don’t need
an additional residual neural network [6].

CASFE has good compatibility and interpretability. Be-
sides next item recommendation, CASFE can also be applied
to other sequential prediction tasks, e.g., CTR prediction,
trail prediction, credit investigation. In CASFE, the inter-
pretability is expressed by the attention weights after each
CNN layers. In CNN, different filters correspond to different
time periods and are responsible for exploring user features
during different time periods.

The contributions of this work are as follows.

1. We propose a CNN & attention-based sequential fea-
ture extractor (CASFE) to extract latent multi-level us-
er features from sequential behaviors. To the best of our
knowledge, this is the first work that joints CNN and
attention mechanism well at the level of the CNN layer
in the sequential prediction field.

2. CASFE has good compatibility and interpretability. It
can be applied to next item recommendation, CTR pre-
diction, and other various sequential tasks. Attention
network brings good interpretability.

3. We perform some experiments on the frequently used
datasets Last.fm 1K and MovieLens 1M. The proposed
CASFE module has been demonstrated state-of-the-art
compared to other common recommendation models. It
is also proved useful in some CTR prediction models.

2 RELATED WORK

In this section, we present an overview of the proposed rec-
ommendation models.

2.1 Rule-based Recommendation

In early works, items are recommended according to the
popularity or category simply. Popularity-based recommen-
dation MostPop used as a baseline in [24] couldn’t be per-
sonalized. It always recommends the items that are clicked
or bought most for any user no matter which category he
prefers. The category-based recommendation still couldn’t
satisfy users’ needs because it simply focuses on the cate-
gories users like but it isn’t able to capture the user feature
hidden in sequential behaviors.

2.2 Collaborative Filtering

Then collaborative filtering (CF) is proposed using all users’
sequences. Neighborhood-based CF models recommend ac-
cording to the similarity among users or items. The stored
user-item ratings are directly used for new items. This can
be done in two ways known as user-based or item-based rec-
ommendation [18].

With large datasets, it is difficult for neighborhood-based
models to perform real-time recommendation. So here comes
model-based CF models that use the historical data to train
the model and then achieve the real-time recommendation
with the model. For example, in Matrix Factorization (MF)
model, the authors decompose the user-item rating matrix
into the user-feature matrix and the feature-item matrix [10,
20]. In this way, we not only get users’ preference and items’
features but also reduce the dimensions of the matrix.

2.3 Deep Learning Models

Recently, deep learning modules are popular and frequently
used in the session-based next item recommendation task.

2.3.1 RNN-based models. There are many related models
based on RNN. For example, [7] adapts the RNN models
to the recommender setting by introducing a new ranking
loss function. Based on RNN, Yu et al. proposed a Dynamic
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Figure 1: The architecture of the CASFE module. Darker blue means a deeper CNN layer. Filters with
different lengths are responsible for extracting features during time periods of different lengths. Attention
network is imported after each CNN layer to emphasize the important features of convolution results. Then
the results of all attention networks are jointed together and inputted into MLP or other modules.

REcurrent bAsket Model (DREAM) [4] which makes use of
the dynamic representation of a specific user and the glob-
al sequential features for next basket recommendation. Data
augmentation and a method to account for shifts in the input
data distribution are proposed to improve RNN-based mod-
els for session-based recommendations [22]. SASRec [9] suc-
ceeds in balancing Markov Chains models and RNN-based
models. The context-aware recommendation has also been
extensively studied [14]. Liu et al. proposed CA-RNN [14]
which utilizes adaptive context-specific transition matrices
for modeling varied transition effects. [15] extends RNN and
proposes a novel method called Spatial Temporal Recurrent
Neural Networks (ST-RNN).

2.3.2 Attention-based models. Attention module gives dif-
ferent weights to items in a sequence. Zhou et al. designed a
local activation unit to adaptively learn the representation
of user interests from historical behaviors with respect to
a certain ad in DIN model [27]. In DIEN [26], the authors
designed an interest extractor layer to capture temporal in-
terests from history behavior sequences. Neural Attentive
Recommendation Machine (NARM) [12] employs attention
mechanism to capture the main purpose from the hidden s-
tates and combines it with the sequential behavior. STAMP
proposed a novel attention mechanism in which the attention
weights are enhanced with the users’ current interests.

2.3.3 CNN-based models. CNN has achieved great perfor-
mance on computer vision [8] and natural language process-
ing [2]. It also makes an improvement in information retrieval
[21], speech recognition [1] and image classification [11, 14].
CNN-based CCPM [16] can extract local-global key features
from an input instance with varied elements, which can be
implemented for not only a single ad impression but also a

sequential ad impression. With horizontal and vertical con-
volution layers, Caser captures both general preferences and
sequential patterns. With dilated convolution, NextItNet in-
creases the receptive fields without relying on the pooling
operation.

3 MODEL DESIGN

Details of CASFE are stated in this section. Then we give
two examples that make use of CASFE in the recommenda-
tion field.

Users’ behavior history would be recorded by the browsed
platform as the dataset. For example, Last.fm 1K provides
the dataset of chronological music listening history of a t-
housand users. The task is to build a model that analyzes
the user behaviors and outputs scores of all alternative item-
s. Then the platform would recommend the top items in the
scores list. In this paper, the set of all candidate items in
a certain recommendation circumstance is denoted by I ={
i1, i2, ..., i|I|

}
. All the known and predicted items belong

to set I. A sequence is defined as S = {s1, s2, ..., sN−1, sN}
where sj ∈ I (1 ≤ j ≤ N). N denotes the number of item-
s in the sequence, i.e., the length of the sequence. St =
{s1, s2, ..., st−1, st} is defined as the sub-sequence of S, which
is actually the prefix items of S with the length of t (1 ≤ t < N ).
So the task converts to calculating the prediction scores for
st+1 and recommending the top items in the scores list.

3.1 CASFE Module

The structure of CASFE is shown in Figure 1. It can be
roughly divided into four parts as follows.

3.1.1 Input. We useE = {e1, e2, ..., eN−1, eN} to denote the
embeddings of a sequence S. et ∈ Rd, 1 ≤ t ≤ N denotes the
d-dimension embedding expression of st in S. E ∈ RN×d is
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got by looking up et in a look-up table that contains embed-
dings of all features.

3.1.2 CNN layers. CASFE takesE as the input which mean-
s E is set as the first layer of CNN c1. The filter height of
each CNN layer is d. So we can regard it as a one-dimension
convolution like Figure 2. f i denotes the convolution filter
and ci denotes the convolution result of the i-th CNN layer
in Figure 1 and Figure 2. The convolution is calculated row
by row as:

cij,k =

k+fw−1∑
l=k

ci−1
j,l ∗ f i−1

j,l . (1)

l
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Figure 2: One-layer convolution with single feature
map. The convolution here is calculated row by row.

3.1.3 Attention network. After each CNN layer, we perfor-
m a multi-layer attention net on the convolution result ci

to emphasize the difference among items and focus on the
important actions. A three-layer attention network example
from ci to ri is showed in Figure 3. The effect of the last
layer is converting the matrix to a vector as the weights.
Hadamard product is performed on two matrices with the
same shape. The result also has the same shape as the two
product items. Hadamard product means multiplying the
corresponding elements with the same position in the two
matrices A and B:

(A ∗B)i,j = Ai,j ∗Bi,j . (2)

With the reduce sum operation, we add the values each row
of A ∈ Rm×n as the element in the result B ∈ Rm×1 at the
same row:

Bi =

n∑
j=1

Ai,j . (3)

Then the results of all attention networks are connected to-
gether as rs ∈ Rlen×1. len is the length of rs that can be
calculated by:

len = F × d+ C ×M × F × d (4)

where F is the number of feature fields, C is the number of
CNN layers and M is the number of feature maps.
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Figure 3: Three-layer attention net. Similar opera-
tions are performed on the result of each layer of
convolution.

3.1.4 Output. Finally, we use MLP to explore the feature
further. The calculation of a single hidden layer of MLP is:

y[i] =

{
rs i = 0

f(w[i]y[i− 1] + b[i]) i > 0
(5)

where w[i] is the weight matrix of the i-th layer with the
height of y[i] as the width, b[i] is the bias and f is the acti-
vation function between layers. We use tanh here:

tanh(x) =
exp(x)− exp(−x)

exp(x) + exp(−x)
. (6)

The output of MLP is the feature of the sequence that CASFE
extracts, which can be utilized in next item recommendation.
With other networks instead of MLP, the result can also be
used in the CTR prediction task.

3.2 CASFE in Next Item
Recommendation

As a sequence feature extractor module, CASFE can be
jointed with other data processing or further feature explor-
ing modules. The combined model can be widely used in se-
quential prediction because of its outstanding performance
in extracting hidden features in sequential data. For exam-
ple, CASFE has a good performance in next item recom-
mendation. After CASFE, we perform matrix multiplication
on its output and the transposed embedding lookup table.
With the recommendation grades of all possible items for the
current sequence denoted as z ∈ R1×d and the embedding
dictionary denoted as D ∈ R|I|×d, the calculation is:

z = y ×DT . (7)

For an arbitrary item in the items set, the more similar its
embeddings and the feature CASFE extracted are, the high-
er grades it would get through this operation. This is the
essence of the multiplication and the items with top grades
would be recommended. In order to calculate the loss for
model training, we first perform softmax function on z as:

p̂i =
ezi∑|I|
j=1 e

zj
. (8)
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In this way, we convert the grades of all items into their prob-
abilities. Then we use cross entropy as the loss function. The
label, i.e., the actual item the user chose is first converted to
a one-hot vector. For example, if the label is the third item,
it would be converted to [0, 0, 1, ..., 0]. Here we denote the
one-hot label vector as p. So the cross entropy is

Loss(p̂) = −
|I|∑
i=1

pi ∗ log(p̂i). (9)

We perform some experiments on the combined model and
the result is showed in Section 4.2.

3.3 CASFE in Broader Sequential
Prediction Tasks

As stated in Section 1, CASFE not only works in next item
recommendation but also can be applied to other sequential
prediction tasks such as CTR prediction, trail prediction,
and credit investigation. For example, we joint the output
of CASFE and the input of CTR prediction models. In this
way, we could use sequential data for the task instead of the
original data organization and the origin models would be
improved with CASFE.

As we know, applying CNN on the original data for CTR
prediction directly doesn’t work very well because differen-
t arrange orders of original features do not have different
meanings[13]. So in CASFE, CNN is performed on the level
of items from a macroscopic view. The specific approach and
details of CASFE with CTR prediction models are shown in
Figure 4. The left architecture in the figure is the origin CTR
prediction approach and the right is the jointed one. As we
can see, traditional models only use the given specific record.
They are unable to take useful sequential information. Ac-
tually, this can be achieved by importing CASFE to deal
with the sequential records before the specific case. The da-
ta inputted into CTR prediction models include the features
embeddings of the last item SN and the result of CASFE
on the whole sequence. The output of CASFE is attached

to the embeddings of SN as a feature which signifies the
sequential information. This combination mode of CASFE
and CTR prediction models are beneficial for proving the
compatibility of CASFE.

In CTR prediction, CASFE can promote predictive mod-
els by attaching its output to the input of origin models.
In this process, the features extracted by CASFE have the
similar concept and sense with the hand-crafted features in
Feature Engineering, which is a good proof for the validity
of the extracted features. Section 4.4 would show the detail-
s and results of experiments about CTR prediction models
with & without CASFE. Besides, we validate the module on
a private dataset about credit and get good results.

4 EXPERIMENTS

In this section, we carry out various experiments to prove
the excellence of CASFE in sequential prediction. First, we
compare its performance with the former state-of-the-art
models in next item recommendation to prove its advanced
property in the sequential field. Second, we test CASFE on
the CTR prediction task trying to prove its compatibility.
Then, results with different hyper-parameters are compared
and analyzed. At last, we analyze the specific parameters in
CASFE’s attention layers to explain its good interpretabili-
ty.

4.1 Datasets and Experiment Setup

4.1.1 Datasets. We carry out experiments on two frequently-
used datasets. One is a music listening record of 1,000 users
from Last.fm 1K 1. The other is MovieLens 1M 2 with 1 mil-
lion ratings from 6,000 users on 4,000 movies. N denotes the
number of items in a sample sequence.

As for the Last.fm 1K music dataset, we process it by
drawing 20,000 songs randomly for Music m and 200,000
songs randomly for Music l. Only records with drawn songs

1http://www.dtic.upf.edu/ ocelma/MusicRecommendationDataset/lastfm-
1K.html
2https://grouplens.org/datasets/movielens/1m/
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Table 1: Dataset statistics. Sequences in different datasets are counted.

Music MovieLens

DataSet m5 l5 l10 l20 l50 l100 n5 n10 n20 ca cb

Sequences 0.616M 2.101M 1.050M 0.525M 0.209M 0.104M 0.113M 0.055M 0.026M 0.946M 0.946M

are used. With a sliding window of both size and stride of
N on those records, we could get datasets of some fixed
sequence lengths. In addition, records in a window, i.e. a
sequence sample must have the same user and the time dif-
ference between the last two items must be less than 2 hours.
In Music m, N is 5 because this drawn dataset is not large.
Music l is converted to 5 datasets with N of 5, 10, 20, 50
and 100.

As for the MovieLens dataset, there are two different pro-
cessing approaches for different tasks. The two approaches
are still with the limiting conditions of the same user in a se-
quence. The first approach ignores the records with ratings of
4 and 5. We convert the original dataset into 3 datasets with
N of 5, 10 and 20. Only the movie id field is used as the fea-
ture. In this way, the generated dataset MovieLens n could
be used in next item recommendation. The second approach
uses all relevant fields including 5 fields about users and 7
fields about movies. They are user id, user gender, user age,
user occupation, user zipcode, movie id and movie genres(1-
6). The maximum quantity of genres of a movie is 6 so we
have 6 fields for movie genres and use a specific feature to fill
the movies with genres less than 6. With a sliding window
whose size is 10 and stride is 1, we get MovieLens ca. For
every window, i.e., every case in MovieLens ca, we extract
the last rating item in the window and get MovieLens cb.
The usage of these datasets would be instructed in specif-
ic experiments. Table 1 shows the numbers of sequences in
these datasets.

Besides, we use subsequences in experiments on dataset
Last.fm 1K. Subsequence means the prefix of a standard se-
quence. For example, in a sequence {s1, s2, s3, ..., s10}, we
use {s1, s2, s3, ..., s9} as the known sequence and s10 as the
label to predict or assess. With subsequences, the origin se-
quence could derive more sequences like {s−1, s1, s2, ..., s9},
{s−2, s−1, s1, ..., s8}, etc. The sequence items with subscript
less than 0 are nonexistent and are filled with a fixed feature
like 0.

4.1.2 Evaluation metrics. We use 5 kinds of evaluation met-
rics in this paper. The specific metrics used in every experi-
ment will be stated.

Recall@K is the hit rate of cases whose true items are in
the top-K recommended list. It is equal to the proportion of
hit cases in all test cases. hit(i) is 1 if case i hits, otherwise
it’s 0. Recall@K can be calculated by

Recall@K =

∑
hit(i)

|the test set| . (10)

Mrr@K calculates the sum of the reciprocal of rankings.
Rankings larger than K would be regarded as infinite so the

reciprocal is 0. So Mrr@K can be calculated by

Mrr@K =
∑ 1

rank(i)
. (11)

NDCG@K [25] is short for Normalized Discounted Cu-
mulative Gain. It’s based on relevancy. Items with high rel-
evancy have a greater impact on the results. NDCG@K is
higher when high relevancy items have better rankings.

AUC is the area under the receiver operating character-
istic curve (ROC). The horizontal axis of ROC is the false
positive rate and the vertical axis is the true positive rate.

Log loss is a frequently used metric in CTR prediction.
It evaluates the accuracy of the result and can be calculated
as

Log loss = − 1

N

∑
yi log (pi) + (1− yi) log (1− pi) . (12)

4.2 Comparison against Baselines

In this subsection, we compare CASFE with the following
baseline models:

MostPop. Mostpop always recommends the items that
people clicked or bought most for any user no matter which
category he prefers.

GRURec[7]. This architecture is based on RNN for next
item recommendation. It imports GRU units for sequence
modeling and uses pair-wise loss function.

Caser[23]. It abandons RNN structures, proposing in-
stead a CNN-based model. Caser uses horizontal and ver-
tical convolutional filters to capture sequential patterns at
point-level and union-level.

STAMP[17]. It is a short-term attention/memory priori-
ty model. STAMP could capture users general interests from
the long-term memory of a session while capturing users cur-
rent interests from the short-term memory of the last-clicks.

NextItNet[24]. This model is formed of a stack of holed
convolutional layers, which can efficiently increase the recep-
tive fields without relying on the pooling operation.

The embedding size is 100 here for all the 6 models includ-
ing CASFE. Some important parameters for CASFE should
be illustrated here. We use a 2-layer CNN. For dataset-
s whose sequence length is less than 10, the kernel size is
[3,2]. For datasets whose sequence length is greater than or
equal to 10, the kernel size is [5,5].

The comparison result of CASFE with the 5 baselines are
shown in Table 2. The model of the best performance on a
certain dataset with a certain metric is in boldface. As we
can see, in the numerical performance on any dataset with
any metric, it is CASFE that almost always achieves the best
result. There are only several metrics that STAMP or Nex-
tItNet reaches the best. MostPop just recommends the items
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Table 2: Performance comparison on next item recommendation

Metric Model
Music MovieLens

m5 l5 l10 l20 l50 l100 n5 n10 n20

Recall@5

MostPop 0.0078 0.0031 0.0027 0.0031 0.0020 0.0013 0.0281 0.0238 0.0156
GRURec 0.3269 0.2414 0.2564 0.2689 0.2633 0.2603 0.0820 0.1191 0.0898
Caser 0.2812 0.2353 0.2623 0.2659 0.2534 0.2400 0.2188 03125 0.1875

NextItNet 0.4050 0.2250 0.3326 0.3501 0.3477 0.3342 0.2812 0.2500 0.2500
STAMP 0.4057 0.3223 0.3464 0.3582 0.3643 0.3407 0.3438 0.3750 0.2812
CASFE 0.4091 0.3940 0.3572 0.3651 0.3698 0.3744 0.2812 0.3750 0.2812

Mrr@5

MostPop 0.0041 0.0006 0.0014 0.0011 0.0009 0.0008 0.0140 0.0104 0.0077
GRURec 0.2593 0.1910 0.1863 0.1899 0.1851 0.1851 0.0442 0.0635 0.0529
Caser 0.2354 0.2021 0.2123 0.2121 0.1932 0.1870 0.1719 0.1698 0.1562

NextItNet 0.3302 0.2690 0.2844 0.2896 0.2988 0.2904 0.2005 0.2188 0.1469
STAMP 0.3345 0.2675 0.2854 0.2948 0.3017 0.2812 0.2078 0.2485 0.1807
CASFE 0.3402 0.2749 0.2974 0.3012 0.3050 0.3085 0.2448 0.2302 0.2292

NDCG@5

MostPop 0.0050 0.0012 0.0017 0.0016 0.0012 0.0010 0.0197 0.0137 0.0096
GRURec 0.2762 0.2036 0.2037 0.2088 0.2046 0.2039 0.0536 0.0772 0.0621
Caser 0.2465 0.2209 0.2248 0.2255 0.2082 0.2003 0.1841 0.2038 0.1644

NextItNet 0.3489 0.2361 0.2980 0.3014 0.3106 0.3079 0.2207 0.2269 0.1722
STAMP 0.3522 0.2812 0.3006 0.3106 0.3174 0.2965 0.2405 0.2775 0.2056
CASFE 0.3574 0.2882 0.3123 0.3172 0.3212 0.3250 0.2571 0.2659 0.2426

Recall@20

MostPop 0.0203 0.0094 0.0057 0.0083 0.0061 0.0049 0.0703 0.0736 0.0579
GRURec 0.4203 0.2997 0.3456 0.3587 0.3612 0.3592 0.2207 0.2773 0.2344
Caser 0.3125 0.3101 0.3199 0.3313 0.3265 0.3042 0.3125 0.4375 0.4062

NextItNet 0.4952 0.2309 0.4017 0.4215 0.4102 0.4055 0.4375 0.3750 0.4062
STAMP 0.5055 0.3912 0.4240 0.4377 0.4417 0.4151 0.4062 0.5000 0.4688
CASFE 0.5003 0.3940 0.4296 0.4416 0.4456 0.4481 0.4375 0.5938 0.4062

Mrr@20

MostPop 0.0052 0.0011 0.0017 0.0017 0.0013 0.0012 0.0177 0.0147 0.0114
GRURec 0.2690 0.1970 0.1948 0.1996 0.1953 0.1951 0.0568 0.0787 0.0668
Caser 0.2399 0.1996 0.2184 0.2189 0.2009 0.1937 0.1801 0.1860 0.1766

NextItNet 0.3397 0.3278 0.2976 0.3053 0.3086 0.3061 0.2206 0.2292 0.1564
STAMP 0.3448 0.2746 0.2933 0.3029 0.3097 0.2892 0.2167 0.2560 0.1938
CASFE 0.3497 0.2817 0.3049 0.3091 0.3127 0.3165 0.2572 0.2510 0.2418

NDCG@20

MostPop 0.0084 0.0029 0.0026 0.0031 0.0023 0.0020 0.0290 0.0272 0.0212
GRURec 0.3033 0.2205 0.2292 0.2359 0.2331 0.2325 0.0919 0.1219 0.1029
Caser 0.2569 0.2373 0.2416 0.2446 0.2296 0.2190 0.2098 0.2434 0.2252

NextItNet 0.3752 0.2529 0.3107 0.3189 0.3197 0.3184 0.2703 0.2606 0.2100
STAMP 0.3812 0.3012 0.3230 0.3336 0.3398 0.3173 0.2614 0.3107 0.2530
CASFE 0.3839 0.3073 0.3334 0.3394 0.3431 0.3465 0.2952 0.3274 0.2784

that are clicked or bought most without considering the user-
s’ features. There is no doubt that its metrics always reach
the worst. Compared to GRURec and Caser, NextItNet and
STAMP have distinct progress. On these bases, CASFE has
a greater improvement.

Caser and NextItNet also use CNN modules but they are
weaker than CASFE. According to model structure, Caser
and NextItNet only take the result of the last CNN layer.
In this way, the explicit information in the middle layers is
lost. Besides, they don’t import attention mechanism to em-
phasize the difference among different items in a sequence.
So we think these are the main reasons why Caser and Nex-
tItNet perform weaker than CASFE. As for STAMP, it does
succeed in importing short memory and using a new atten-
tion network, but it’s difficult for STAMP to capture the

user’s feature during some periods like CASFE. It performs
the best among the 5 baselines.

4.3 Hyper-parameter Analysis

We perform experiments to study the impact of different
hyper-parameters. In every group of the following experi-
ments, we only change one parameter and keep others the
same. The following experiments are performed mainly on
Music m5,MovieLens n5,MovieLens n10 andMovieLens n20.
NDCG can reflect the overall effect better. So we use ND-
CG@5 and NDCG@20 here to compare the results.

4.3.1 The number of CNN layers. CNN is a main compo-
nent of CASFE. To figure out the effect of the number of
CNN layers C, we perform several experiments on dataset
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MovieLens n10 and MovieLens n20. The kernel sizes are all
3 in these experiments. The experiment results are shown in
Figure 5. It shows that more CNN layers don’t always lead
to a better result. It is 2-layer CNN that can usually make
the best result.
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Figure 5: The performance with varying number of
CNN layers. Two-layer CNN usually achieves the
best result.

4.3.2 Size of kernels. The size of kernels indicates the length
of the period phase we explore about user behaviors. These
experiments are still performed on dataset MovieLens n10
and MovieLens n20. There are two convolution layers, i.e.,
we would joint three attention results together. [3,3] means
the kernels are d × 3 and d × 3. In Figure 6, [3,3] reaches
the best on MovieLens n10. But on MovieLens n20, CASFE
needs a longer kernel to get the best result. NDCG@5 and
NDCG@20 keep rising from [2,2] to [6,6]. As the length of
the sequence grows, the longer kernel may lead to a better
result when trying to capture the periodic features of user
behavior.
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Figure 6: The performance with varying kernel sizes.
Longer sequences may need longer filters.

4.3.3 The embedding size. Figure 7 shows the variation of
metrics with the embedding size d. Higher d doesn’t lead to
better results always. For the sequence length of 10, the best
embedding size is 60. For the sequence length of 20, d of 90
reaches the highest result. Embedding size that is too high
may lead to weak performance because of overfitting.

4.3.4 Dropout. During the learning process, dropout could
optimize the artificial neural network by randomly ignoring
some nodes of hidden layers. We also compare the exper-
iment results with different dropout rates. The results are
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Figure 7: The performance with varying embedding
size d. Sequences of different lengths may need dif-
ferent embedding size.

shown in Figure 8. The most proper dropout rate on this
task is around 0.6.
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Figure 8: The performance with varying dropout.
The rate around 0.6 usually does the best.

4.4 Compatibility of CASFE on CTR
prediction

As discussed in subsection 3.3, CASFE can make use of se-
quential data for the non-sequential CTR prediction task.

We joint the output of CASFE and the input of CTR pre-
diction models to verify the compatibility of CASFE. Here
we choose several CTR prediction models to prove the com-
patibility of CASFE. The following models are used:

IPNN [19]. PNN uses a product layer to capture interac-
tive patterns between inter-field categories. IPNN is a kind
of PNN that utilizes the inner product of vectors.

DNN [5]. This deep component is a feed-forward neu-
ral network. A data record (a vector) is fed into the neural
network.

DeepFM [5]. This model consists of the deep component
and the FM component that share the same input. The deep
component is a feed-forward neural network and the FM
component learns high-order feature interactions.

Experiments of models with and without CASFE are per-
formed on dataset MovieLens 1M with different organiza-
tion form, i.e., for the origin models IPNN, DNN and DeepFM
we use MovieLens cb which regards a single record as a case,
and for the models with CASFE we use MovieLens ca which
regards a record to predict and several records before it as a
case. AUC and Log loss are used as evaluation metrics. Table

Session: Long - Sequential Data Analysis CIKM ’19, November 3–7, 2019, Beijing, China

1710



Table 4: Attention visualization of CASFE for interpretability. Higher weights mean higher importance in the
current layer. The experiment is performed on dataset MovieLens n10.

movie id 1961 2020 527 318 593 296 2858 608 529 3006

movie
poster

movie
category

Drama
Drama

Romance
Drama
War

Drama
Drama
Thriller

Crime
Drama

Comedy
Drama

Crime
Drama
Thriller

Drama Drama

attention
weights 1

0.115 0.105 0.056 0.130 0.097 0.099 0.149 0.069 0.180

attention
weights 2

0.210
0.153

0.152
0.198

0.149
0.138

attention
weights 3

0.381
0.469

0.150

Table 3: Compatibility of CASFE on CTR prediction

Model AUC Log loss Improvement

IPNN 0.8010 0.4327
2.2‰

IPNN+CASFE 0.8028 0.4253

DNN 0.8018 0.4381
1.4‰

DNN+CASFE 0.8027 0.4301

DeepFM 0.8059 0.4191
5.8‰

DeepFM+CASFE 0.8106 0.3837

3 shows the experiments results. The Improvement colum-
n is the ratio of AUC improvement brought by CASFE to
AUC of the origin model. As we can see, the three models
are all improved with CASFE. Though the improvement is
not very large, it may be able to bring an excellent increase
in online CTR [3, 13]. Compared to dataset MovieLens cb,
dataset MovieLens ca has the same items to predict, but the
sequential information is added through CASFE. Therefore,
CASFE could improve the performance of the three typi-
cal CTR prediction models obviously. This fact proves that
CASFE has good compatibility and is successful in extract-
ing features from sequential data.

4.5 Interpretability of CASFE

As mentioned before, CASFE has good interpretability. At-
tention networks in CASFE introduce a good opportunity
for providing explanations for such deep models. Because
the height of kernels is equal to the embedding size, the con-
volution in CASFE is like one-dimension convolution more.
Therefore, the results of different layers of CNN could be
interpreted as the features of users’ behaviors with different

periods. For example, with a d× 3 kernel as f1 and a d× 2
kernel as f2, we can regard c1 as the feature of every single
day, c2 as the feature of every three days with one day as the
stride and c3 as the feature of every six days with three days
as the stride. After their respective attention network, r1, r2

and r3 are jointed together as rs. In this way, the module is
able to collect the features of user behaviors with one day,
three days and six days as the periods. Furthermore, the
result of the last layer of the attention network shows the
difference among items in the responding convolution result.

In order to make the interpretability of CASFE compre-
hensible, we choose a representative case from datasetMovie-
Lens n10 in the process of test. As shown in Table 4, we
record the id, poster, and category of the ten movies in the
sequence case and the attention weights of them except the
last movie. The last three rows are the attention weights
of different CNN-layer results. In attention weights 1, the
weights of movie 2858 and movie 529 are the highest. But
they don’t appear in the highest one in attention weights
2 that concludes the first four movies. 0.210 is the highest
weight in attention weights 2, but the highest one in atten-
tion weights 3 indicates the four middle values 0.153, 0.152,
0.198 and 0.149. Besides, the three continuous movies with
the id of 2020, 527 and 318 don’t have the highest weights in
attention weights 1 but they all appear in the highest values
of the last two attention weights. Considering the keynote
of the three movies, they all try to explore the deep part
of human nature and soul. A single one of them doesn’t
contribute to the user’s feature most, but three continuous
movies with similar keynote do need to be taken seriously.
The recommended movie is Good Will Hunting, which also
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has a similar keynote. These phenomena have proved that
the sequence features presented in different convolution lay-
ers are different. But the conventional CNN-based models
only make use of the result of the last convolution layer usu-
ally. In CASFE we joint the results of all the convolution
layers to ensure that the information of any layer wouldn’t
be lost.

In this way, the CNN in CASFE not only emphasizes the
receptive field but also succeeds in exploring features of the
user behaviors with different time periods. This characteris-
tic is very beneficial for the situation that users’ behaviors
have strong periodicity. From the perspective of feature engi-
neering, CASFE can extract the useful feature during some
different time periods automatically.

5 CONCLUSION

In this paper, we propose a CNN & attention-based sequen-
tial feature extractor (CASFE) module. The information
of all CNN layers is used in order to capture the period-
ic features of user behavior. The deeper layer corresponds
to longer time periods. We apply attention mechanism after
each CNN layer to focus on the important features. At last,
the results of each attention mechanism after the correspond-
ing CNN layer are jointed together and inputted into MLP
or other components to extract the user feature further. The
experiments results against baselines on dataset Last.fm 1K
and MovieLens 1M prove that CASFE has better perfor-
mance on next item recommendation task. It also has good
interpretability which can be proved according to the atten-
tion weights. Besides, as a compatible module, CASFE can
also be applied in CTR prediction with models like DeepFM.
With CASFE, sequential information can be used to the C-
TR prediction task so the origin models would be enhanced.
In a word, CASFE is an accurate, interpretable and compat-
ible module for sequential feature extracting and has better
performance than existing models on the same tasks.
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