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Abstract—Pairwise learning algorithms are a vital technique
for personalized ranking with implicit feedback. They usually
assume that each user is more interested in items which have
been selected by the user than remaining ones. This pairwise
assumption usually derives massive training pairs. To deal with
such large-scale training data, the learning algorithms are usually
based on stochastic gradient descent with uniformly drawn pairs.
However, the uniformly sampling strategy often results in slow
convergence. In this paper, we first uncover the reasons of
slow convergence. Then, we associate contents of entities with
characteristics of data sets to develop an adaptive item sampler
for drawing informative training data. In this end, to devise a
robust personalized ranking method, we accordingly embed our
sampler into Bayesian Personalized Ranking (BPR) framework,
and further propose a Content-aware and Adaptive Bayesian
Personalized Ranking (CA-BPR) method, which can model both
contents and implicit feedbacks in a unified learning process. The
experimental results show that, our adaptive item sampler indeed
can speed up BPR learning and CA-BPR definitively outperforms
the state-of-the-art methods in personalized ranking.

Keywords-Personalized Ranking; Adaptive Sampling; Pairwise
Learning

I. INTRODUCTION

Due to information overload in the Web, recommender

systems with personalized ranking have become an impor-

tant part in modern applications. For example, Taobao and

Amazon embed personalized ranking techniques into their

recommender systems in order to exactly direct potential cus-

tomers to products. Most of studies [1] [2] [3] in personalized

ranking are designed for explicit ratings. However, explicit

ratings are generated by users actively interacting with the

systems, and are hard to be obtained in practice. For instance,

MovieLens needs users to rate movies on its website, and

then personalized recommendation is provided based on these

explicit ratings. For real-world recommender systems, we scale

our research data to implicit feedbacks, such as whether a user

has browsed a web page, or whether a customer has purchased

a product. Such binary signals are more widespread and are

easier to be collected by recommender systems than explicit

ratings.

Pairwise learning algorithms, such as Bayesian Personalized

Ranking (BPR) [4] and its extensions [5] [6] [3], are tailored

to personalized ranking with implicit feedback. They usually

assume that users are more interested in items that they have

selected than the remaining items, and amount of training

pairs will be derived. For dealing with large-scale training

data, the learning of parameters is typically based on the

stochastic gradient descent (SGD) with uniformly drawn pairs.

However, the uniformly sampling strategy may result in slow

convergence, especially when the number of items is large.

In practice, each user has only seen a handful of items, and

has provided feedbacks on some of these viewed items (these

feedbacks indicate the user may like these items). Uniformly

sampling strategy equally draws negative items from the total

set of items. Massive meaningless training pairs are produced

by this kind of sampling strategy, and these training data

can not provide helpful information to tune the personalized

ranking lists. For example, a smart phone and a toothbrush

may be drawn to be a training pair. Intuitively, we can not

say that a user dislikes a toothbrush because he likes a

smart phone, this pair is meaningless in real-world scenarios.

Moreover, uniformly sampling strategy draws a lot of items

which are impossible to be viewed by related users. Since

a user in fact is no chance to assess an unseen item, it is

hard to correctly estimate the user’s preference on the unseen

item, and the pairs containing unseen items can not provide

useful information to tune the personalized ranking lists. For

instance, when a user searches smart phones on a website, the

smart phones of non-mainstream brands, usually are ranked

at tail places in result list by the retrieval system of the

website, and the user tends to miss them. Thus, we are hard

to accurately assess how much the user like a non-mainstream

smart phone, and its corresponding training sample usually

has low contribution to the learning of parameters. Generally

speaking, different training pairs have different effect on the

learning of parameters. How to utilize the properties of data

sets, e.g., the distribution of user activity and item popularity,

and other auxiliary information, e.g., contents of entities, to

devise a more efficient sampling strategy for pairwise learning

is a thorny problem.

To the best of our knowledge, there are two directions

of improving uniformly sampling strategy, i.e., directly uti-

lizing distribution of data set, e.g., long-tailed distribution,

to draw training data [7], or leveraging strategies [7] [8] to

automatically approximate realistic distribution of data set and

adaptively draw training data. The methods of former direction

usually rely on much of prior knowledge. Since different

data sets may have different kinds of data distributions, these
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methods are hard to be scaled to general applications. Thus, we

address the problem of slow convergence with developing an

adaptive item sampler. Note that our sampler performs better

than previous work [7] [8] in terms of balance of efficiency

and performance. It holds a self-evident rule, i.e., “apples to

apples”, for drawing comparable items for each observed user-

item pair. For example, suppose that a user has bought an

iPhone. For this observed user-item pair, we tend to draw

other kinds of smart phones which are comparable to iPhone

in terms of product attributes, rather than other things, such as

toothbrushes, which are not under the category of smart phone.

Moreover, under the category of smart phone, we further select

those products which probably have been viewed by the user.

With increasing of social media, apart from collaborative

information, there is much content information, such as posts

of users and descriptions of items. Using content information,

we also can characterize latent properties of users or items,

such as users’ interests, or categories of items. So it is possi-

ble to leverage content information to improve personalized

ranking. In this paper, we associate contents with implicit

feedbacks to develop a non-uniform item sampler for drawing

informative training data. For an observed user-item pair,

our sampler draws items which belong to the same category

with the observed item and are probably viewed by the user.

Furthermore, we embed our sampler into BPR framework,

and scale BPR to model both implicit feedbacks and contents.

Specifically, we propose an comprehensive solution, Content-

aware and Adaptive Bayesian Personalized Ranking (CA-

BPR) method, which incorporates implicit feedbacks with

contents to learn latent vectors for entities as well as content-

aware mappings. In a nutshell, our contributions in this paper

are listed as follows:

We illustrate the reasons about the slow convergence prob-

lem in conventional BPR learning.

To speed up pairwise learning for personalized ranking, we

take the content information into considerations and develop

an adaptive sampling strategy to draw informative training

data. Our sampling strategy provides a better balance of effi-

ciency and performance than previous strategies, e.g., uniform

sampler [4], or adaptive sampler [7].

To roundly promote the performance of personalized rank-

ing, we embed our sampler into BPR learning framework, and

propose CA-BPR which can learn reliable latent vectors for

entities as well as mappings for contents.

We conduct a series of experiments to validate proposed

methods. The results show that our sampling strategy indeed

speed up BPR learning, and CA-BPR can improve personal-

ized ranking by combining contents and implicit feedbacks.

II. RELATED WORK

Factorization methods are popular in personalized recom-

mender systems. They are utilized to deal with various infor-

mation collected by recommender systems, such as implicit

feedbacks [9] [4], attributes of item [5] [2], user profiles

[10] and social information [11]. According to the data they

studied, these methods can be generally arranged into two

branches, i.e., collaborative methods, or content-based meth-

ods.

The collaborative methods [4] [12] [8] deal with a mass

of users interactions with items, e.g., implicit feedbacks and

explicit ratings (they are called as collaborative information).

These methods factorize collaborative information, and at-

tempt to learn latent representations for users and items in

a shared latent space. Matrix factorization (MF) [13] and its

extensions [14] [15] [16] are typical factorization methods

to deal with collaborative information. For instance, implicit

MF (iMF) [9] extends the basic MF to deal with implicit

feedbacks by calculating an adaptive confidence weight for

each user-item pair. Although MF extensions can deal with

implicit feedbacks, they easily fall into the over-fitting problem

because of commonly existing data skew in implicit feedback

data sets (the number of positive feedbacks is usually less

than one percent of the total number). For alleviating the

data skew and learning recommender systems from implicit

feedbacks, Bayesian Personalized Ranking (BPR) [4] and its

extensions [6] [3] [7] are proposed, which make a pairwise

assumption that users are more interested in items that they

have selected than the remaining items. Since the pairwise

assumption usually derives large scale training data, the learn-

ing algorithms are typically based on SGD with uniformly

drawn pairs. However, different training samples may have

different contributions to the parameter learning, the uniformly

sampling strategy usually generates a mass of ineffective

training samples and results in slow convergence. In particular,

when the number of items is large and the item popularity has

long-tail distribution [17], the uniformly sampling strategy will

suffer from extremely slow convergence. Thus, to speed up

the BPR learning, Rendle et al. further investigate the long-

tail effect and utilize long-tail effect to develop non-uniformly

item samplers [7]. For a given user, they plan to select items

which are popular in a certain domain and have not been

selected by the user to consist training pairs. Theoretically,

this sampling scheme is very time consuming, because it treats

latent factors of items as the popularity indicators of items and

needs to reorder items under each domain in each iteration.

For amortizing runtime, Rendle et al. have to compromise

on predictive performance by reducing times of reordering.

On the other hand, aiming to obtain a general scheme to

speed up the BPR learning, Zhong et al. [8] try to draw

informative training pairs according to preference difference

of a user on two unselected items. However, since the number

of items in real-world data sets is very large, this strategy has

to spend a lot of time on calculating preference differences.

Thus, both [8] and [7] are falling into a dilemma in terms of

how to balance efficiency and performance, while our adaptive

sampling algorithm has a better strategy to cope with this

dilemma and has more potential to speed up the BPR learning.

Content-based methods [5] [2] [10] investigate entities in

recommender systems from their content information. Gen-

erally, this kind of methods utilize contents of entities, such

as attributes of item, texts of user, or pixels of picture, to

learn latent representations for entities and to alleviate the
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cold start problem. For example, in Factorization Machines

(FM) [2], all kinds of attribute information are concatenated

into a feature matrix, and factors associated with attributes are

factorized from these content information by rating regression.

To alleviate the cold start problem in recommender systems,

Map-BPR [5] extends BPR framework to learn content-aware

mappings from the space of content information to the la-

tent space. Then, Map-BPR utilize the learned content-aware

mappings to learn latent vectors for the new entities which

lack enough collaborative information. However, Map-BPR

segments the latent vectors learning into two independent

parts. This limitation causes that the latent vectors of entities

which occur in implicit feedback data set, only indicate col-

laborative properties of entities but not any content properties.

For obtaining more reliable latent vectors, CA-BPR method

learns the latent vectors for entities observed in data set from

both collaborative information and content information by a

unified learning process.

III. PAIRWISE PREFERENCE LEARNING FROM IMPLICIT

FEEDBACK

In this section we first briefly review the BPR algorithm,

and then discuss its limitations, i.e., slow convergence and

cold start problem.

BPR [4] is a popular personalized ranking framework for

dealing with implicit feedback. If the user um has selected the

item vi but not selected the item vj , then BPR assumes that,

um prefers vi over vj , and defines the pairwise preference of

um as
p (i �m j) := Φ (xmij ), (1)

where Φ(x) = 1/(1 + exp (−x)) and xmij := s (um, vi) −
s (um, vj). s (·, ·) can be any kind of scoring functions which

indicates the relevance between the user and the item.

Based on the pairwise preference assumption, the set of

all pairwise preference DS := { (m, i, j) | vi ∈ I+um
∧ vj ∈

I \ I+um
} can be created from implicit feedback data set, where

I+um
denotes the set of observed items which are selected by

the user um, and a triple t = (m, i, j) represents the user um

is relevant to the item vi but irrelevant to the item vj . For

simplicity, we call vi as a positive item of um, while vj is

a negative one. Given a set of pairwise preference DS , the

goal of BPR is to maximize the likelihood of all pairwise

preference:
argmax

Θ

∏
(m,i,j)∈DS

p (i �m j), (2)

which is equivalent to minimize the negative log likelihood:

Lfeedback = −
∑

(m,i,j)∈Ds

lnΦ (xmij ) + λ||Θ||2, (3)

where Θ denotes the set of all latent vectors and λ is a hyper-

parameter. Since the size of DS is very large, the learning

algorithms of BPR are generally based on SGD with uniformly

drawn training triples.

However, the above learning schema often results in slow

convergence, because the uniformly sampling draws amount of

training pairs which have low contributions on the gradients.

More specifically, for a given training sample (m, i, j) ∈ DS ,

the stochastic gradient of an arbitrary parameter θ ∈ Θ is:

∂Lfeedback

∂θ
= (1− Φ (xmij))

∂ (xmij)

∂θ
. (4)

According to Eq. (4), if Φ (xmij) → +1, the stochastic

gradient will approximate to 0, and the contribution of training

sample (m, i, j) on approaching the optimization objective is

very small. Associating Eq. (4) with Eq. (1), for an observed

user-item pair, a negative item should be comparable to the

observed item, i.e., the preference scores of a negative item

and the observed item, which are provided by the observed

user, should be close to each other, otherwise the training

sample is inefficient to SGD. Empirically, each user only has

viewed a small subset of items, and has provided feedbacks

on some of items in this subset. The uniform sampler equally

draws negative items from the total set of items. For an

observed user-item pair, most uniformly sampled items are not

comparable to the observed item or impossible to be viewed

by corresponding user. For example, iPhone with toothbrush or

iPhone with a non-mainstream cell phone often be sampled by

a uniform sampler. Since these training pairs have tiny effect

on SGD, the training process often is slow convergence.

Besides, similar to classical factorization techniques, if a

user or item lacks enough feedbacks, its latent representa-

tion can not be well learned. In real-world data sets, the

distributions of user activity and item popularity tend to be

long tailed. This causes that most users and items only have

a handful feedbacks. Moreover, in real-world recommender

systems, new entities may be added into systems at any time.

As a result, the BPR framework easily suffers from a cold

start problem.

Since the content information of entities can characterize

latent properties of users and items. In the following, we first

develop a non-uniformly sampling strategy for drawing infor-

mative negative items, and then provide a comprehensive so-

lution for obtaining better personalized ranking performance.

IV. ADAPTIVE SAMPLING STRATEGY

In this section, we combine contents and implicit feedbacks

to develop a non-uniform item sampler. Our strategy auto-

matically approximates realistic distribution of data set and

adaptively draws informative training pairs.

A. Overview of Adaptive Sampling Strategy

In most of real-world applications, users assess the items

in the same category, and then make their options. Therefore,

we hold a self-evident rule, i.e., “apples to apples” to sample

informative items for each observed user-item pair. We tend

to sample those negative items which are comparable to the

observed items as well as have high probability to be viewed

by related users. Specifically, for an observed user-item pair

(um, vi), we conduct following steps to select a reasonable

item vj as a negative item:

According to the categorical distributions of user um and

item vi, we first infer the event that user um selected item vi
happens on which category.
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Given a category, we further select an item vj as a negative

item, which has a high probability to be browsed by user um

under the category.

B. Categorical Distribution of Entity

In many applications, due to the lack of category infor-

mation, recommender systems have difficulty in accurately

providing the categories of users and items. For dealing with

this issue, we utilize the latent representation of an entity to

approximatively indicate its categories.

Formally, we assume that an entity can belong to multiple

categories C = {c1, c2, ...., ck}, and its categorical distribution

follows a power law [7]. Let yei ∈ R
k denote the latent

vector of entity ei and the matrix Y e = [ ye1, y
e
2, y

e
3, ... ] is

latent representation of entities which is learned from both

content information and implicit feedback. We consider the

classical scenario of recommendation, which has two types of

entities, i.e., users (e.g., customers) and items (e.g., movies,

books and songs). For clearly, we use a superscript u or

v to denote a variable associating with users or items. For

example, yum denotes the latent vector of user um and Y u

denotes the latent representation matrix of user. To bridge the

categorical distribution and the latent vector of entity, we treat

the probability that the entity ei belongs to the category c ∈ C,

as a mixture over standardized factors, and define it as

p(c | ei) ∝ exp (
yei,c − μc

σc
), (5)

where μc = E ( ye∗,c ) and σc = V ar ( ye∗,c ) denote the em-

pirical mean and variance over all entity factors, respectively.

Assuming that the categorical distributions of users and items

are independent, we further derive the probability of observed

user-item pair (um, vi) associating with the category c to be

a joint probability:

p (c |um, vi) = p (c |um) p (c | vi). (6)

According to the joint probability, we can sample a category

c for the observed event that user um picked out item vi.

C. Rank-Invariant of Item List

Under a given category c, we aim to draw an item vj ,

which has high potential to have been browsed by user um.

Intuitively, we can treat the probability p (c | ei) as the ranking

score of ei under the category c, and directly draw items

according to their ranking scores. However, there exists a gap

between browsing probabilities and ranking scores. In real-

world applications, items are presented in ranking lists, and the

top-ranked items usually have significantly high probabilities

to be browsed by users than other items. For instance, the top

three items in the ranking list have much higher probabilities

to be browsed by users than remaining ones, while the ranking

scores of items may only have tiny differences. For bridging

this gap, we segment the sampling under a given category into

two steps. Specifically, we first sample a ranking place r for

candidates from an empirical distribution. Then, we sort items

under this category, and return the item at the ranking place

r to be a negative item for the observed user-item pair.

�������� ������	�


��
���

���������
����


��
�����������
������

Fig. 1. The schematic of projecting an item from different modalities to a shared latent
space. We assume that collaborative information, e.g., ratings, and content information,
e.g., text, belong to two different modalities, i.e., space A and space B.

Typically, the empirical distribution approximately follows

an analytical law, e.g. a Geometric [18] or Zipf [19] distribu-

tion. Here, we adopt Geometric distribution to draw the item

vj from the ranking list of the category c :

p ( vj | c ) ∝ exp (−r(j) / λ ) λ ∈ R
+, (7)

where r(j) denotes the ranking place of the item vj , and λ is

a hyper-parameter which tunes the probability density.

D. Discussion of Sorting Items

After obtaining the ranking place of negative item, we

need to arrange an item into this place. For this purpose, a

simple method in [7], which treats latent factors of items as

ranking scores and sorts the items according to their ranking

scores, can be implemented. However, this method has to

reorder items under each category in each iteration, because

the latent vectors of items are updated iteratively. This leads to

a high computational complexity, because this simple method

at least requires a runtime of O (k n log n) in each iteration for

reordering, where n is the number of items. For amortizing the

runtime, a compromised strategy is also proposed in [7], which

reorders items under each category every n log n iterations.

However, this compromise easily leads to local convergence

and a degeneration which is randomly sampling items from

a randomly selected subset of items. More specifically, since

the number of items usually is very large, the ranking lists

retain unchange in many iterations. Thus, the sampler in fact

degenerates into a poor one which samples items from a

given subset of items. It is means that changes continuously

happen on a few latent vectors and the learning process easily

falls into local convergence. Moreover, since the latent vectors

of items are randomly initialized, ranking lists are equal to

random sequences until the first reordering happens. If the

random ranking lists are not timely updated, the sampler will

degenerate into a random sampler which samples item from an

unchange subset of items. Therefore, we need a new method

to balance efficiency and performance.

E. Sampling Algorithm

According to the studies of subspace learning [20] [21],

if we project an entity from different modalities to a shared

subspace, then its representations in the shared subspace

should have some relevances, e.g., complementary or similar.

As shown in Figure 1, if we independently project an item

from content space and collaborative space to a shared latent
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space, then we can obtain two latent representations in the

shared latent space for the item. We are supposed these two

latent representations to be similar or complementary. Inspired

by the studies of subspace learning, we plan to avoid the

degeneration of randomly sampling from a randomly selected

subset of items by initializing the ranking lists according

to content information of items. Specifically, we first learn

approximate latent representations of items from their content

information by feature learning methods, e.g., Conventional

Neural Networks (CNN) [22] for images, Latent Dirichlet Al-

location (LDA) [23] for texts. Then, we view the approximate

latent factors as the ranking scores of items under categories,

and sort items under each category. Finally, we initialize

ranking lists of items with the sorting results.

Besides, to avoid the problem of local extremum and bal-

ance efficiency and performance, we will reorder items under

a popular category, if their ranking scores happen significant

changes. More specifically, since we can arrange user-item

pairs into categories according to Eq. (6), we further count the

number of observed user-item pairs under each category, and

define a variable ρ ∈ R
k to indicate popularity of categories. In

each iteration, we first sample a popular category c according

to its popularity:

p (c | ρ) ∝ exp (
ρc − μ

σ
), (8)

where μ and σ denote the empirical mean and variance over

the variable ρ, respectively. Then, we treat current latent

factors of items as new ranking scores of items, and measure

whether new score vector under category c has significant

changes comparing with the old one by a similarity function

sim ( ·, · ). If the change of ranking score vector is over given

threshold δ, we update ranking scores under category c by yv∗,c
which is c-th column of latent representation matrix of items,

and reorder items under this category.

In summary, we propose an adaptive sampling strategy in

Algorithm 1 which selects a negative item for an observed

user-item pair with the rule that “apples to apples”, i.e., we

select negative items which are comparable to their related ob-

served items and have high probability to be viewed by related

users. In Algorithm 1, index (c, r) returns the item ranked at

the place r from the ranking list lc ∈ L. xc ∈ X is the

ranking score vector under the category c, which is initialized

by approximate latent representations of items learned from

content information of items. Notice that, in the total learning

process, our method usually only needs to reorder items under

some categories several times. Our sampling strategy greatly

reduces the computational complexity as well as avoid the

problem of local extremum.

V. CONTENT-AWARE AND ADAPTIVE BPR

In the above sections, we have illustrated how to improve

the BPR learning by an adaptive item sampler, and learn the

latent factors of entities only considering implicit feedbacks.

However, in real-world recommender systems, entities do

not always have enough collaborative information, e.g., new

entities may be added into the systems at any time. Therefore,

Algorithm 1 Content-aware and Adaptive sampling
Input:

The observed user-item pair set S;
The counters of category popularity ρ;
The latent representation matrixes Y u and Y v ;
The ranking scores of items X = {x1, x2, ...., xk};
The orders of items L = {l1, l2, ...., lk};

Output:
The training triple (um, vi, vj);
The category popularity ρ;

1: Draw a category c from p (c | ρ);

2: if sim
(
xc, y

v
∗,c

)
< δ then

3: Update xc by yv
∗,c;

4: Reorder items under c and update lc;
5: end if
6: Draw (um, vi) ∈ S uniformly;
7: Draw a category c from p (c |um, vi), (1 � c � k);
8: ρc + +;
9: Draw a rank r from p (r) ∝ exp (−r / λ ), (1 � r � n);

10: vj ←
{

index (c, r) if sgn ( yu
m,c ) = 1,

index (c, n− r − 1) else

we propose a comprehensive solution for personalized ranking,

Content-aware and Adaptive Bayesian Personalized Ranking

(CA-BPR), which is based on our adaptive sampling strategy

and incorporates implicit feedbacks and contents into a unified

personalized ranking framework. CA-BPR can learn reliable

latent vectors for entities and mappings for contents.

A. Learning Content-Aware Mappings

Here, we formally present an unsupervised solution for

learning the content-aware mappings. We first use the matrix

Ae = [ ae1, a
e
2, a

e
3, ... ] to denote the content features of

entities. Then, we present the objective function to learn the

content-aware mappings:

Lcontent = ||AeW e − Y e||2F , (9)

where W e ∈ R
de×k denotes a mapping matrix, and k is the

dimension of latent vectors.

B. Parameter Inference of CA-BPR

Generally speaking, the optimization problem expressed by

Eq. (10) has infinite solutions because of lacking supervised

information. Fortunately, according to the studies of subspace

learning, we can learn a latent matrix ˜Y e from implicit

feedbacks, and use ˜Y e to be an approximation of Y e. As a

result, we treat ˜Y e as pseudo labels, and substitute it into Eq.

(9), then we rewrite the objective function as

Lcontent = ||AeW e − Ỹ e||2F . (10)

With the pseudo labels, we not only can optimize our

objective function, but also can jointly learn the mapping

matrix W (e) from both collaborative information and content

information. Therefore, the overall objective function of CA-

BPR with latent vectors and content-aware mappings is ex-

pressed as

arg min
Θ,W

Lfeedback + Lcontent =

−
∑

(m,i,j)∈Ds

lnΦ
(
(yv

i − yv
j ) y

u
m

)
+ λ||θ||2

+
1

2

∑
e∈{u,v}

λe||W e||2F + ||AeW e − Y e||2F .
(11)
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For learning the parameters Y u, Y v , Wu and W v in Eq.

(11), we develop an alternative optimization algorithm to learn

latent vectors and mapping matrices iteratively. Specifically,

our algorithm uses SGD with our adaptive sampling strategy

to learn the latent vectors and implements matrix decompo-

sition with the alternative least squares to learn the mapping

matrices.

In each iteration, when we are updating the latent factor

matrix Y e, we set the mapping matrix W e to be a constant

and treat Lcontent, the entire optimization objective of content

information, to be a regularizer. Thus, the gradient of an

arbitrary latent parameter θ is

∂L

∂θ
=

∑
(m,i,j)∈Ds

(
1− Φ

(
(yv

i − yv
j ) y

u
m

)) ∂ ((yv
i − yv

j ) y
u
m)

∂θ

+
∂
∑

e∈{u,v} λ
e
(||AeW e − Y e||2F

)
∂ θ

+ λ θ.

(12)

The updating rule for parameter θ is θ = θ + η ∂L
∂θ , where η

is the learning rate. On the other hand, given a latent factor

matrix Y e, we view Y e as pseudo labels and treat Lfeedback

as a constant. Thus, the derivative of objective is

∂L

∂W e
= (Ae)T (AeW e − Y e) + λe W e. (13)

Let ∂L
∂W e = 0, the updating rule for W (e) can be derived as

W e = ( (Ae)TAe + λe
E )−1 AeY e, (14)

where E ∈ R
k×k is an identity matrix.

In a nutshell, the algorithm for learning parameters of CA-

BPR is summarized in Algorithm 2. It mainly repeats two

learning steps until the parameters reach convergence, i.e., it

first learns the latent factors of entities from implicit feedbacks,

by SGD with our adaptive item sampler, and then, it learns

the content-aware mapping matrices by matrix decomposition.

Algorithm 2 Learn parameters for CA-BPR
Input:

The observed user-item pair set S;
The feature matrix of items F ;
The content feature of entities A := {Au, Av}

Output:
Θ := {Y u, Y v}, W := {Wu, W v};

1: Initialize Θ and W with uniform(−
√

6
k ,

√
6

k );
2: Standardized Θ;
3: Initialize the popularity of categories ρ randomly;
4: repeat
5: Draw a triple (m, i, j) with Algorithm 1;
6: for each latent vector θ ∈ Θ do
7: θ ← θ + η ∂L

∂θ ;
8: end for
9: for each W e ∈ W do

10: Update W e with the rule defined in Eq. (14);
11: end for
12: until convergence

VI. EXPERIMENT

In this section, comparing with the state-of-the-art methods,

we conduct experiments to validate our sampling strategy and

CA-BPR method on two public data sets. First we investigate

convergence rate of our sampling strategy. Then, we evaluate

ranking quality of CA-BPR by Area Under the ROC Curve

(AUC) and Mean Average Precision (MAP). Finally, on cold

start problem, we study the performance of compared methods

by simulating new items recommendation.

A. Data sets and Tasks

We use two real-world data sets for experiments, i.e.,

DBLP1 and MovieLens2, and carry out training and testing

on randomly split training (80%) and testing (20%) data.

DBLP contains 2,084,055 papers with 2,244,018 citations.

Each paper may be associated with abstract, authors, published

year, and title. We preprocess the DBLP data to be an

experimental data set in a similar way as [7]. More specifically,

we sample 1,000 authors who published no more than 5

papers and cited 5-100 papers. Thus, we obtain 1,000 authors,

16,313 papers and 23,506 author-paper pairs. Each author-

paper pair denotes a relation of the author cited the paper. In

experiments, we treat texts in published papers of an author as

the content information of this author, and paper text as content

information of the paper. We use the term-frequency over texts

as features of content information. Our task is to predict the

personalized ranking of citing papers for each author.

MovieLens includes 100,000 ratings with 943 users and

1682 movies. Each user has rated at least 20 movies. In

experiments, the occupational description of a user is treated as

content information of the user, and the key words in the title

of a movie are viewed as content information of the movie.

Using the same processing method in [24], we do not use

rating values but just binary rating events by assuming that

users tend to rate watched movies. Thus, for a specific user,

our task is to predict the potential ranking list of movies.

Comparing these two data sets, we observe that: DBLP

data set has a heavier long-tailed effect than the MovieLens

data set. And the implicit rating matrix of DBLP data set is

sparser than that of MovieLens; Each entity in MovieLens has

its corresponding content information, but entities in DBLP

always lack corresponding texts. In DBLP, many authors have

incomplete content information and some papers do not have

content information.

B. Compared Methods

To investigate our sampling strategy and the CA-BPR

method, we compare our methods with state-of-the-arts, i.e.,

MF [25], BPR-MF [4], Ada-BPR [7], FM [2] and Map-BPR

[5].

Table I summarizes the characteristics of these compared

methods. In addition, we view user-item pairs which do not

occur in implicit feedback data set as negative feedbacks. Since

the data sets we used existing data skew, i.e., the number

of positive feedbacks is far less than the number of negative

feedbacks, the training of FM and MF is easy to suffer from

over-fitting. To avoiding the over-fitting caused by data skew,

we train FM and MF with the training data sets which contain

1http://arnetminer.org/citation
2http://grouplens.org/datasets/movielens
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TABLE I
CHARACTERISTICS OF COMPARED METHODS

Method Content Feedback Sampling

MF no implicit –

FM yes implicit/explicit –

BPR-MF no implicit uniform

Map-BPR yes implicit uniform

Ada-BPR no implicit non-uniform

CA-BPR yes implicit non-uniform
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Fig. 2. Convergence comparison on DBLP and MovieLens. Each approach is trained
by given the same parameters, i.e., the learning rate is 0.15 on DBLP and 0.012 on
MovieLens; the factor dimensionality is 50 on both data sets; the training epoch is 1500
on DBLP and 1000 on MovieLens.

randomly drawn negative feedbacks, i.e., the proportions of

negative feedbacks and positive feedbacks are 50 : 1 on DBLP

and 100 : 1 on MovieLens.

C. Results and Discussion

1) Convergence: Figure 2 shows the convergence compar-

isons on DBLP and MovieLens, where the performance of

methods is evaluated by AUC and likelihood of objective

in each training epoch. The hyper-parameters of compared

methods, i.e., learning rate and factor dimensionality, are set

to be the same values in experiments. Figure shows that

the methods with non-uniformly sampling strategies usually

can achieve faster convergence rates than that of BPR-MF.

Moreover, the method with our sampling strategy not only

achieves approximate convergence rates with Ada-BPR, but

also reaches better convergence points than Ada-BPR in

terms of AUC. This result indicates our sampling strategy

can obtain a better balance of efficiency and performance,

and has more potential to speed up the BPR learning. In

addition, although Ada-BPR has competitive convergence rates

in terms of convergence on negative likelihood or AUC, its

performance, in terms of convergence point of AUC, is worst

TABLE III
TOP-N RECOMMENDATION EVALUATED BY MAP@N (N=3, 10, 20) AND RATING

PREDICTION EVALUATED BY RMSE, ON DBLP (K=50) AND MOVIELENS (K=50).

Method
DBLP MovieLens

MAP@3 MAP@10 MAP@20 MAP@3 MAP@10 MAP@20

MF 0.063 0.221 0.207 0.346 0.385 0.344

FM 0.025 0.095 0.100 0.168 0.221 0.207

BPR-MF 0.215 0.257 0.260 0.322 0.376 0.329

Ada-BPR 0.220 0.261 0.263 0.212 0.271 0.245

Map-BPR 0.207 0.245 0.243 0.275 0.325 0.293

CA-BPR 0.246 0.283 0.282 0.367 0.398 0.357
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Fig. 3. Precision-Recall curves on DBLP (K=50) and MovieLens (K=50).

among of compared methods. One possible reason is that Ada-

BPR reorders items under each category after nlogn iterations

for amortizing runtime. This compromise causes that Ada-BPR

continuously samples items from an unchanged subset of items

in many iterations, and easily falls into local optimal.

2) Ranking Quality: Table II gives the ranking performance

with different factor dimensionalities. Since content informa-

tion may be noisy and incomplete, FM only is used to deal

with content information, usually can not get reliable ranking

performance. On the other hand, due to the lack of enough

collaborative information, the methods only considering im-

plicit feedbacks, e.g., MF, BPR-MF and Ada-BPR, also can

not get ideal results. Owing much to combining implicit feed-

backs with contents, CA-BPR consistently outperforms other

methods in terms of MAP and AUC. Besides, we note that,

the performance of Ada-BPR often strikingly fluctuate with

different dimensionalities, e.g., DBPL (K=20) and MovieLens

(K=50). This is another evident that Ada-BPR easily falls into

local optimal. Meanwhile, since CA-BPR is developed on our

adaptive sampling strategy, it can avoid local optimal problem.

3) Recommendation Performance & Rating Prediction:
Figure 3 shows the performance of different methods with

varying number of recommendations. From that we can see,

due to a comprehensive solution for dealing with content in-

formation and collaborative information, CA-BPR consistently

outperforms other methods. Besides, Ada-BPR has better

performance on DBLP than on MovieLens. This is because the

sampling strategy of Ada-BPR applys long-tail effect to speed

up convergence, and DBLP data set exists a heavier long-tail

effect than MovieLens data set. This result may indicate that

Ada-BPR may be hard to obtain reliable performance, when

the data sets do not have significant long-tail effect.

We further evaluate the ability of compared methods in the

tasks of Top-N recommendation and rating prediction. Table

III shows the results in terms of MAP@N and RMSE. Owing

much to sampling informative training data, CA-BPR performs

better than all baselines in terms of MAP@N. Since users

are more likely to care about several items which are on

the top places, this result indicates that CA-BPR can well fit

requirements of real-world recommender systems. Note that

our rating prediction results should not be directly compared

to MF or FM because their training environments are different,

i.e., MF and FM are trained on training sets which fix the

proportions of negative feedbacks and positive feedbacks.

4) Cold Start Problem: For investigating the cold start

problem, we evaluate the ability of compared methods on
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TABLE II
PERFORMANCE COMPARISON ON THE DBLP AND MOVIELENS DATA SETS WITH THREE DIFFERENT FACTOR DIMENSIONALITIES( K = 10; 20; 50). THE PERFORMANCE OF

APPROACHES IS EVALUATED BY MAP AND AUC.

Method

DBLP Movielens

MAP AUC MAP AUC

K=10 K=20 K=50 K=10 K=20 K=50 K=10 K=20 K=50 K=10 K=20 K=50

MF 0.096 0.091 0.093 0.611 0.606 0.616 0.235 0.238 0.240 0.794 0.793 0.791

FM 0.066 0.067 0.069 0.611 0.605 0.621 0.144 0.150 0.147 0.657 0.658 0.659

BPR-MF 0.226 0.227 0.257 0.611 0.606 0.616 0.305 0.288 0.271 0.850 0.843 0.830

Ada-BPR 0.244 0.183 0.228 0.624 0.579 0.582 0.298 0.267 0.237 0.825 0.821 0.771

Map-BPR 0.222 0.247 0.278 0.612 0.617 0.616 0.306 0.291 0.267 0.850 0.842 0.829

CA-BPR 0.279 0.276 0.297 0.660 0.652 0.651 0.320 0.316 0.307 0.852 0.850 0.847

TABLE IV
THE PERFORMANCE OF NEW ITEMS RECOMMENDATION ON THE DBLP DATA SET.

THE PERFORMANCE IS MEASURED BY MAP@N (N=3, 10, 20). WE ONLY EVALUATE

THE USER-ITEM PAIRS WHEN THE ITEMS ARE NOT APPEARED IN THE TRAINING SET.

Method MAP@3 MAP@10 MAP@20

MF 0.000 0.000 0.001

FM 0.016 0.034 0.043

BPR-MF 0.037 0.057 0.075

Ada-BPR 0.038 0.053 0.067

Map-BPR 0.050 0.080 0.087

CA-BPR 0.057 0.085 0.098

the task of new items recommendation. More specifically, we

only evaluate the user-item pairs which are occurring in testing

set but their items are not occurring in training set. Table IV

provides recommendation performance in terms of MAP@N.

Due to the lack of collaborative information, the methods

without considering contents usually have worse performance

than content-aware methods. Moreover, CA-BPR can obtain

the best results among of content-aware methods. Besides,

we can observe that, FM only outperforms MF, and all BPR

extensions, whether they take contents into account or not, can

outperform FM. There may be two reasons about this result.

Firstly, many new items in DBLP data set also lack corre-

sponding content information. FM only can provide random

predictive results on this part of new items. Secondly, since

content information usually contains noisy, the performance

of FM may degenerate.

VII. CONCLUSIONS

Traditional pairwise learning algorithms for personalized

ranking usually have two fundamental limitations, i.e., long

training process caused by uniformly sampling strategy and

neglect of content information of entities. In this work, we

have illustrated our solutions for dealing with these limitations.

Specifically, to speed up BPR learning, we have developed an

adaptive sampling strategy, which utilizes content information

to obtain a better balance of efficiency and performance. To al-

leviate cold start problem and further improve performance, we

have proposed CA-BPR, which embeds our sampling strategy

to efficiently learn parameters. CA-BPR can combine implicit

feedbacks and contents to learn reliable latent factors for

entities as well as content-aware mappings. Comprehensive ex-

periments have validated our solutions by comparing with the

state-of-the-art methods. However, in real-world applications,

content information usually includes multiple types, noisy

and redundant, which may lead to performance degeneration

of our solutions. In the future, for obtaining more reliable

performance in such scenarios, we plan to devise a more robust

solution based on this work.
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